タグ「空欄補充」の検索結果

146ページ目:全1740問中1451問~1460問を表示)
明治大学 私立 明治大学 2011年 第2問
角$\theta$が$0^\circ \leqq \theta \leqq 90^\circ$を満たすとき,次の$\theta$の関数を考える.
\[ y=\sin 3\theta +6 \cos 2\theta-6 \sin^2 \frac{\theta}{2}-3 \cos \theta+12 \sin \theta \]
以下の問に答えなさい.空欄内の各文字に当てはまる数字を答えよ.

(1)$\displaystyle x=\sin \theta$とおくとき,$y$を$x$の式で表すと
\[ y=-[ケ]x^3-[コサ]x^2+[シス]x+[セ] \]
となる.
(2)(1)の$3$次関数を利用すると,$y$の最大値は$[ソ]$であり,最小値は$[タ]$であることが分かる.
上智大学 私立 上智大学 2011年 第1問
$a,\ b,\ c$は整数で,$a \geqq 1,\ b \geqq 0,\ c \geqq 0$とする.$x$の2次式$P(x)=ax^2+bx+c$を考える.

(1)$P(1)=2$を満たす$P(x)$は全部で[ア]個存在する.
(2)条件 \[ \lceil P(n)=5 \text{を満たす自然数}n\text{が存在する}\rfloor \]
を満たす$P(x)$は全部で[イ]個存在する.
このような$P(x)$のうち,$P(3)=17$を満たすものは
\[ P(x) = [ウ]x^2+[エ]x+[オ] \]
である.
(3)条件
\[ \lceil P(n)=3 \text{を満たす自然数}n\text{が存在し,} \]
\[ \qquad \qquad \text{かつ,任意の自然数}m\text{に対して}P(m)\text{が奇数である}\rfloor \]
を満たす$P(x)$のうち,$a$が最大のものは
\[ P(x) = [カ]x^2+[キ]x+[ク] \]
であり,$a$が最小のものは
\[ P(x) = [ケ]x^2+[コ]x+[サ] \]
である.
上智大学 私立 上智大学 2011年 第3問
$xyz$空間内の正四面体$\mathrm{ABCD}$を考える.頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$はすべて原点$\mathrm{O}$を中心とする半径$1$の球面$S$上にある.$\mathrm{A}$の座標は$(0,\ 0,\ 1)$であり,$\mathrm{B}$の$x$座標は正,$y$座標は$0$である.また,$\mathrm{C}$の$y$座標は$\mathrm{D}$の$y$座標より大きい.

(1)$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$の$z$座標は$\displaystyle \frac{[ニ]}{[ヌ]}$である.

(2)$\mathrm{C}$の$x$座標は$\displaystyle \frac{[ネ]}{[ノ]} \sqrt{[ハ]}$である.

(3)$\mathrm{O}$を端点とし$\triangle \mathrm{ABC}$の重心を通る半直線が$S$と交わる点を$\mathrm{P}$とする.線分$\mathrm{AP}$の長さは$\displaystyle \frac{[ヒ]}{[フ]} \sqrt{[ヘ]}$,ベクトル$\overrightarrow{\mathrm{AP}}$とベクトル$\overrightarrow{\mathrm{BP}}$の内積は$[ホ]$である.

以後,四面体$\mathrm{PABC}$を$V_\mathrm{p}$で表す.

(4)$\triangle \mathrm{APB}$の面積は$\displaystyle \frac{[マ]}{[ミ]}$である.

(5)$(3)$で$\triangle \mathrm{ABC}$に対して点$\mathrm{P}$および四面体$V_\mathrm{p}$を定めたときと同様に,$\triangle \mathrm{ACD}$,$\triangle \mathrm{ABD}$,$\triangle \mathrm{BCD}$に対してそれぞれ点$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{T}$および四面体$V_\mathrm{Q}$,$V_\mathrm{R}$,$V_\mathrm{T}$を定める.四面体$\mathrm{ABCD}$と$V_\mathrm{P}$,$V_\mathrm{Q}$,$V_\mathrm{R}$,$V_\mathrm{T}$をあわせた立体を$V$とすると,$V$の表面積は$[ム]$であり,$V$の体積は$\displaystyle \frac{[メ]}{[モ]} \sqrt{[ヤ]}$である.
立教大学 私立 立教大学 2011年 第1問
下記の空欄イ~ホにあてはまる数を記入せよ.

(1)方程式$3\cos^3 \theta-5 \cos^2 \theta-4 \cos \theta+4=0$,および不等式$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$をみたす$\theta$に対して,$\cos \theta=[イ]$である.
(2)公差$\displaystyle \frac{1}{5}$,初項$-8$の等差数列$a_1,\ a_2,\ \cdots$を
\[ a_1 \;|\; a_2,\ a_3 \;|\; a_4,\ a_5,\ a_6 \;|\; a_7,\ a_8,\ a_9,\ a_{10} \;|\; \cdots \]
とグループ分けする.第$101$番目のグループに属する数の和は$[ロ]$である.
(3)空間に$3$点$\mathrm{A}(2,\ 2,\ 2)$,$\mathrm{B}(1,\ 2,\ 1)$,$\mathrm{C}(2,\ y,\ 1)$が与えられている.三角形$\mathrm{ABC}$が直角三角形になるのは$y=[ハ]$のときである.

(4)極限$\displaystyle \lim_{x \to 0} \frac{\sin (1-\cos x)}{x^2}$の値は$[ニ]$である.

(5)$1$個のさいころを$4$回続けて投げるとき,$3$回以上連続して同じ目が出る確率は$[ホ]$である.
早稲田大学 私立 早稲田大学 2011年 第4問
公正な硬貨$X$を$3$回投げる.「$1$回目に表が出る」という事象を$A$,「$3$回目に表が出る」という事象を$B$,「試行結果が裏→表の順序で出ることはない」という事象を$C$とする.このとき,
\[ P(A \cap C)-P(A)P(C)=\frac{[ス]}{[セ]} \]
である.

次に,硬貨$X$が必ずしも公正でなく表の出る確率が$a (0<a<1)$,裏の出る確率が$1-a$であるとする.この場合の確率を$P_a$で表すとき,
\[ \frac{P_a(A)P_a(B)P_a(C)}{P_a(A \cap B \cap C)} \]
を最小にする$a$の値は$\displaystyle \frac{\sqrt{[ソ]}}{[タ]}$である.

ただし,$[セ]$,$[タ]$はできるだけ小さな自然数で答えること.
明治大学 私立 明治大学 2011年 第2問
曲線$C:y=x^2$上に,$3$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2)$,$\mathrm{B}^\prime (-b,\ b^2)$が与えられている.ただし,$-b<a<0<b$とする.

(1)$\mathrm{A}$,$\mathrm{B}$を結ぶ直線$\ell$の方程式は,$[ ]$である.
(2)点$\mathrm{P}(p,\ p^2)$を通り,$y$軸に平行な直線が$\ell$と交わる点を$\mathrm{Q}$とする.ただし,$a<p<b$とする.$\mathrm{PQ}$の長さは,$[ ]$である.
(3)$\mathrm{A}$,$\mathrm{B}$を固定して,$\mathrm{P}$が$C$上で$\mathrm{A}$,$\mathrm{B}$の間を動くとき,$\triangle \mathrm{ABP}$の面積の最大値は,$[ ]$である.
(4)$\mathrm{B}$,$\mathrm{B}^\prime$を固定して,$\mathrm{A}$,$\mathrm{P}$が$C$上で$\mathrm{B}$,$\mathrm{B}^\prime$の間を動くとき,四角形$\mathrm{BB}^\prime \mathrm{AP}$の面積の最大値を求めよ.またこのときの$\mathrm{A}$,$\mathrm{P}$の位置を求めよ.
明治大学 私立 明治大学 2011年 第3問
次の連立不等式で表される領域$D$を考える.
\[ \left\{ \begin{array}{l}
\displaystyle \left( x-\frac{1}{2} \right)^2+y^2 \leqq 1 \\
\displaystyle y \leqq -2x+\frac{3}{2} \\
\displaystyle y \leqq x+\frac{7}{10}
\end{array} \right. \]
以下の問に答えなさい.

(1)$y$切片が$k$で,直線$\displaystyle y=-2x+\frac{3}{2}$に垂直な直線を$\ell$とする.直線$\ell$が領域$D$と共有点を持つとき,$k$のとる範囲は,
\[ -\frac{[チ]}{[ツ]}-\frac{\sqrt{[テ]}}{[ト]} \leqq k \leqq \frac{[ナ]}{[ニ]} \]
である.
(2)直線$\ell$が領域$D$で切り取られる線分の長さを$L$とおく.$L$が最大となるのは,$\displaystyle k=-\frac{[ヌ]}{[ネ]}$のときであり,そのとき,$\displaystyle L=[ノ]+\frac{\sqrt{[ハ]}}{[ヒフ]}$となる.
明治大学 私立 明治大学 2011年 第4問
平行四辺形$\mathrm{ABCD}$を考える.辺$\mathrm{AB}$と辺$\mathrm{AD}$の長さは,それぞれ$3,\ 4$で,$\angle \mathrm{ABC}$は$60^\circ$であるとする.辺$\mathrm{AD}$と辺$\mathrm{BC}$の中点をそれぞれ,$\mathrm{M}$,$\mathrm{N}$とおく.また,線分$\mathrm{AN}$と線分$\mathrm{BD}$の交点を$\mathrm{P}$とし,線分$\mathrm{CM}$と線分$\mathrm{BD}$の交点を$\mathrm{Q}$とする.$\overrightarrow{a}=\overrightarrow{\mathrm{AB}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{BC}}$とおく.以下の問に答えなさい.

(1)$\displaystyle \overrightarrow{\mathrm{AP}}=\frac{[ヘ]}{[ホ]} \overrightarrow{a}+\frac{[マ]}{[ミ]} \overrightarrow{b}$と表せる.また,$\displaystyle \mathrm{AP}=\frac{[ム] \sqrt{[メ]}}{[モ]}$となる.

(2)$\displaystyle \cos (\angle \mathrm{PAQ})=\frac{[ヤユ] \sqrt{[ヨ]}}{[ラリ]}$となる.
(3)三角形$\mathrm{ABP}$の外接円の半径は$\displaystyle \frac{\sqrt{[ルレロ]}}{[ワヲ]}$である.
(4)三角形$\mathrm{ABP}$の外心を$\mathrm{O}$とおくとき,$\overrightarrow{\mathrm{AO}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表しなさい.
明治大学 私立 明治大学 2011年 第1問
次の各問の$[ ]$にあてはまる数を記入せよ.

(1)大小$2$つのサイコロを振り,出た目をそれぞれ$a,\ b$とする.$ab \geqq 20$となる確率は$\displaystyle \frac{[ア]}{[イ]}$であり,$ab$が$3$で割り切れる確率は$\displaystyle \frac{[ウ]}{[エ]}$である.

(2)$\triangle \mathrm{ABC}$において$\mathrm{BC}=2$,$\mathrm{AC}=\sqrt{2}$,$\angle \mathrm{C}=105^\circ$とする.
\[ \cos 105^\circ=\frac{\sqrt{[オ]}-\sqrt{[カ]}}{[キ]} \]
である.また,$\mathrm{AB}=[ク]+\sqrt{[ケ]}$であり,$\angle \mathrm{A}=[コサ]^\circ$である.
(3)$a,\ b$を正の実数で,$a \neq 1,\ b \neq 1$とする.このとき

$(\log_{a^2}b+\log_b a^3)(\log_{a^3}b+\log_{b^2}a)$

$\displaystyle =\frac{[シ]}{[ス]} \cdot (\log_a b)^2+\frac{[セ]}{[ソ]} \cdot (\log_b a)^2+\frac{[タ]}{[チ]}$

である.
明治大学 私立 明治大学 2011年 第2問
次の空欄$[ア]$から$[キ]$に当てはまるものを入れよ.

行列$M$を$M=\left( \begin{array}{rr}
-1 & -1 \\
1 & -1
\end{array} \right)$で定める.このとき
\[ M=\sqrt{2} \left( \begin{array}{cc}
\cos \frac{[ア]}{[イ]} \pi & -\sin \frac{[ア]}{[イ]} \pi \\ \\
\sin \frac{[ア]}{[イ]} \pi & \cos \frac{[ア]}{[イ]} \pi
\end{array} \right) \]
である.
次に$\left( \begin{array}{c}
a_n \\
b_n
\end{array} \right)=M^n \left( \begin{array}{c}
1 \\
0
\end{array} \right) (n=1,\ 2,\ 3,\ \cdots)$とおき,点$(a_n,\ b_n)$を$\mathrm{P}_n$で表す.このとき点$\mathrm{P}_n$と原点$\mathrm{O}$との距離は$[ウ]^{\frac{n}{2}}$である.またベクトル$\overrightarrow{\mathrm{OP}_n}$と$\overrightarrow{\mathrm{OP}_{n+2}}$のなす角は$\displaystyle \theta=\frac{[エ]}{[オ]}\pi$である.ただし,$0 \leqq \theta \leqq \pi$とする.
$3$点$\mathrm{P}_n$,$\mathrm{P}_{n+1}$,$\mathrm{P}_{n+2}$を頂点とする三角形の面積は$[カ] \times [キ]^{n-1}$である.
ただし
\[ \left( \begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array} \right) \left( \begin{array}{cc}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta
\end{array} \right)=\left( \begin{array}{cc}
\cos (\alpha+\beta) & -\sin (\alpha+\beta) \\
\sin (\alpha+\beta) & \cos (\alpha+\beta)
\end{array} \right) \]
となることは使ってよい.
スポンサーリンク

「空欄補充」とは・・・

 まだこのタグの説明は執筆されていません。