タグ「空欄補充」の検索結果

144ページ目:全1740問中1431問~1440問を表示)
早稲田大学 私立 早稲田大学 2011年 第2問
関数$\displaystyle f(x)=x^3-3x^2-6x-\frac{6}{x}-\frac{3}{x^2}+\frac{1}{x^3}$の定義域は$x>0$とする.
\[ x=\frac{[オ]\text{±}\sqrt{[カ]}}{[キ]} \text{のとき,関数} f(x) \text{は最小値}[ク]\text{をとる.} \]
ただし,$[キ]$はできるだけ小さな自然数で答えること.
明治大学 私立 明治大学 2011年 第3問
次の各設問の$[13]$から$[16]$までの空欄を埋めよ.

$2$つの放物線$C_1: y=x^2+3x+2$,$C_2:y=-x^2+4x+2$と直線$\ell:y=ax+2$($a$は定数)を考える.直線$\ell$は,放物線$C_1,\ C_2$とそれぞれ異なる$2$点で交わるとする.ここで,$C_1$と$\ell$で囲まれた部分の面積と$C_2$と$\ell$で囲まれた部分の面積の和を$S$とする.

(1)放物線$C_1$と直線$\ell$の交点の$x$座標は$[13]$である.
(2)$a=5$のとき,$S=[14]$である.
(3)$a=[15]$のとき$S$は最小となり,そのときの$S$は$[16]$である.
金沢工業大学 私立 金沢工業大学 2011年 第2問
放物線$y=x^2-4x-6$を$C_1$とし,$C_1$を$x,\ y$軸方向にそれぞれ$3,\ -9$だけ平行移動して得られる放物線を$C_2$とする.

(1)放物線$C_2$の方程式は$y=x^2-[サシ]x+[ス]$である.
(2)放物線$C_2$の頂点の座標は$([セ],\ [ソタチ])$である.
(3)放物線$C_1$と$C_2$の両方の頂点を通る直線の方程式は
\[ y=[ツテ]x-[ト] \]
である.
金沢工業大学 私立 金沢工業大学 2011年 第3問
関数$\displaystyle y=3 \cos^2 x-\cos 2x+\sin x \left( -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2} \right)$について考える.

(1)$t=\sin x$とおくと,関数$y$は$t$の関数として
\[ y=[ア]t^2+t+[イ] \]
と表される.
(2)$y$は$\displaystyle x=\frac{\pi}{[ウ]}$のとき最大値$\displaystyle \frac{[エ]}{[オ]}$をとり,$\displaystyle x=-\frac{\pi}{[カ]}$のとき最小値$[キ]$をとる.
金沢工業大学 私立 金沢工業大学 2011年 第6問
関数$f(x)=|2x-6|-4$に対して,$\displaystyle F(x)=\int_0^x f(t) \, dt (0 \leqq x \leqq 6)$とおく.

(1)$0 \leqq x \leqq [コ]$のとき,$F(x)=-x^2+[サ]x$であり,$[コ]<x \leqq 6$のとき,$F(x)=x^2-[シス]x+[セソ]$である.
(2)$F(x)$は$x=[タ]$のとき最大値$[チ]$をとり,$x=[ツ]$のとき最小値$[テト]$をとる.
明治大学 私立 明治大学 2011年 第1問
次の各設問の$[1]$から$[8]$までの空欄と$[ ]$に適当な答えを入れよ.

(1)箱の中に,$1$と書かれたカードが$4$枚.$2$と書かれたカードが$3$枚,$3$と書かれたカードが$2$枚,$4$と書かれたカードが$1$枚ある.箱から同時に$3$枚のカードを取り出すとき,以下の問いに答えよ.

(i) $1$と書かれたカードが少なくとも$1$枚含まれる確率は$[1]$である.
(ii) $3$枚のカードに書かれた数字の和が$5$となる確率は$[2]$である.

(2)$\triangle \mathrm{ABC}$において次が成り立つとき,以下の問いに答えよ.
\[ \sin A:\sin B:\sin C = 13:8:7 \]

(i) $\cos A=[3]$である.
(ii) $\triangle \mathrm{ABC}$の外接円の直径が$13$であるとき,$\triangle \mathrm{ABC}$の面積は$[ ]$である.ただし,分母を有理化して答えよ.

(3)$\triangle \mathrm{OAB}$に対して$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t\overrightarrow{\mathrm{OB}}$とする.実数$s,\ t$が次の条件を満たすとき.点$\mathrm{P}$が動く部分の面積を求めよ.ただし,$\triangle \mathrm{OAB}$の面積を$1$とする.

(i) $\displaystyle \frac{1}{2} \leqq s+t \leqq 1,\ 0 \leqq s,\ 0 \leqq t$のとき$[4]$.
(ii) $t \leqq s,\ s \leqq 3,\ 0 \leqq t$のとき$[5]$.

(4)$\displaystyle 81^{-x}-\frac{1}{2}\cdot 3^{-2x+2}+2=0$を満たす最大の$x$は$\log_9 [6]$である.
(5)ある星$\mathrm{O}$を中心として同一方向に円軌道を描きながら回っている星$\mathrm{A}$と星$\mathrm{B}$がある.ただし,星$\mathrm{A}$と星$\mathrm{B}$の円軌道は同一平面上にあると仮定する.星$\mathrm{A}$と星$\mathrm{O}$との距離は$0.9$億$\mathrm{km}$で,星$\mathrm{B}$と星$\mathrm{O}$との距離は$1.5$億$\mathrm{km}$である.星$\mathrm{A}$は星$\mathrm{O}$の周りを一周するのに$240$日かかり,星$\mathrm{B}$は$360$日かかる.現在,星$\mathrm{A}$が星$\mathrm{B}$より回転方向に$90^{\circ}$進んだ位置にあるとするとき,星$\mathrm{A}$と星$\mathrm{B}$との距離が最初に最大になるのは,今から$[7]$日後である.また,$60$日後の星$\mathrm{A}$と星$\mathrm{B}$との距離は$[8]$億$\mathrm{km}$である.
明治大学 私立 明治大学 2011年 第2問
次の各設問の$[9]$から$[12]$までの空欄を埋めよ.$[ ]$についても答えよ.
数列
\[ 1 \cdot1,\ 1\cdot 3,\ 2\cdot 5,\ 2\cdot 7,\ 2\cdot 9,\ 2\cdot 11,\ 3\cdot 13,\ 3\cdot 15,\ 3\cdot 17,\ 3\cdot 19,\ 3\cdot 21,\ 3\cdot 23,\ 4\cdot 25,\ \cdots \]
がある.ただし$\cdot$は積を表し,例えば第8項は$3\cdot 15 = 45$の意味である.この数列を
\[ 1 \cdot1,\ 1\cdot 3\ |\ 2\cdot 5,\ 2\cdot 7,\ 2\cdot 9,\ 2\cdot 11\ |\ 3\cdot 13,\ 3\cdot 15,\ 3\cdot 17,\ 3\cdot 19,\ 3\cdot 21,\ 3\cdot 23\ |\ 4\cdot 25,\ \cdots \]
\qquad 第$1$群 \qquad\qquad 第$2$群 \qquad\qquad\qquad\qquad\qquad 第$3$群 第$4$群 \\
のように第$m$群に$2m$個の項を含むように分ける.

(1)第$m$群の最初の項はもとの数列の$[9]$番目の項である.また,この項は$m$を用いて$[10]$と表すことができる.
(2)初めて積が$2011$を越える項は第$[11]$群の$[12]$番目の項である.また,第$[11]$群の全ての項の和は$[ ]$である.
明治大学 私立 明治大学 2011年 第1問
次の空欄$[ア]$から$[カ]$に当てはまるものをそれぞれ入れよ.ただし$\log$は自然対数,また$e$はその底である.

(1)円柱$C$の底面の半径を$r$,高さを$h$とする.$C$の体積が$V$であるとき$C$の表面積$S$を$r$と$V$で表せば
\[ S=2 \pi r^{[ア]}+2Vr^{[イ]} \]
となる.したがって体積$V$を一定にしたまま$S$を最小にするためには
\[ r=\left( \frac{V}{[ウ]} \right)^{\frac{1}{3}} \]
とすればよい.このとき$r$と$h$の間には$r=[エ]h$の関係がある.
(2)次の問いに答えよ.

(i) $\displaystyle \lim_{n \to \infty} \frac{\log (n+5)}{\log (n+2)}=[オ]$
(ii) 数列$\{a_n\},\ \{b_n\}$をそれぞれ
\[ a_n=(n+5)^{-2n+1},\quad b_n=\frac{1}{n \log (n+2)} \]
で定める.このとき
\[ \lim_{n \to \infty} (a_n)^{b_n}=[カ] \]
となる.
明治大学 私立 明治大学 2011年 第1問
次の各問の$[ ]$に数値を入れよ.

(1)$a_1,\ a_2,\ a_3,\ \cdots$を初項が$-15$,公差が整数$d$の等差数列とする.このとき$a_4<0<a_5$ならば,$d=[1]$となり,
\[ \sum_{n=1}^5 (-1)^{n-1}na_n=[2] \]
である.
(2)$1$から$4$までの数字が,$1$つずつ書いてある$4$枚のカードがある.この中から同時に$2$枚を取り出し,大きい方の数字を$a$とし,小さい方の数字を$b$とするとき,$2a-b$を得点とする.このとき,得点の期待値は,$[3]$であり,得点が$[3]$未満となる確率は,$[4]$である.
(3)$0 \leqq x \leqq \pi$かつ$\displaystyle x \neq \frac{\pi}{2}$を満たす$x$について,
\[ 1-\tan^2 x=3 \cos (\pi-x)+\frac{2}{\cos (\pi-x)} \]
を満たすとき,
\[ \cos x=[5],\quad \sin x=[6] \]
である.
明治大学 私立 明治大学 2011年 第1問
次の各問の$[ ]$にあてはまる数を記入せよ.

(1)$z^2 = -2i$のとき,$z$を求めると,
\[ z= [ア]-[イ]i,\ z=-[ウ]+[エ]i \]
である.ただし,$i^2=-1$である.
(2)$2$次方程式$x^2-px+p-1=0$の$2$つの解の比が$1:3$であるとき,
\[ \text{定数}p\text{の値は}[ア],\ \text{または}\frac{[イ]}{[ウ]}\text{である} \]
(3)不等式$\log_{0.5}(5-x)<2\log_{0.5}(x-3)$の解は,
\[ [ア]<x<[イ] \]
である.
(4)放物線$y=ax^2 (a>0)$と直線$y=bx (b>0)$とで囲まれた部分の面積を$S_1$とし,交点をそれぞれ$\mathrm{O}$(原点),$\mathrm{A}$とする.$\mathrm{A}$から$x$軸に垂線$\mathrm{AH}$を下ろし,$\triangle \mathrm{AOH}$の面積を$S_2$とすると,
\[ \frac{S_1}{S_2} = \frac{[ア]}{[イ]} \]
である.
(5)事象$\mathrm{A}$の起こる確率が$\displaystyle\frac{4}{5}$,事象$\mathrm{B}$の起こる確率が$\displaystyle\frac{3}{5}$,事象$\mathrm{A}$と事象$\mathrm{B}$のどちらか一方だけが起こる確率が$\displaystyle\frac{2}{5}$であるとする.このとき,事象$\mathrm{A}$と事象$\mathrm{B}$がともに起こる確率は$\displaystyle\frac{[ア]}{[イ]}$である.
(6)$\triangle \mathrm{ABC}$において,辺$\mathrm{AB}$の中点を$\mathrm{D}$,辺$\mathrm{AC}$を$2:3$に内分する点を$\mathrm{E}$とし,$\mathrm{CD}$と$\mathrm{BE}$との交点を$\mathrm{O}$とするとき,
\[ \overrightarrow{\mathrm{OD}} = \frac{[ア]}{[イ]}\overrightarrow{\mathrm{CA}} + \frac{[ウ]}{[エ]}\overrightarrow{\mathrm{CB}} \]
である.
スポンサーリンク

「空欄補充」とは・・・

 まだこのタグの説明は執筆されていません。