タグ「空欄補充」の検索結果

141ページ目:全1740問中1401問~1410問を表示)
会津大学 公立 会津大学 2012年 第3問
数列$\{a_n\}$の初項$a_1$から第$n$項$a_n$までの和$S_n$が,
\[ S_n=n-2-a_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
であるとき,以下の空欄をうめよ.

(1)$a_1=S_1=[ ]$であり,$a_2=S_2-S_1=[ ]$である.
(2)$a_{n+1}$を$a_n$の式で表すと,$a_{n+1}=[ ]$である.
(3)$a_n$を$n$の式で表すと,$a_n=[ ]$である.
会津大学 公立 会津大学 2012年 第4問
曲線$C:y=\log x-1$の接線で原点を通るものを$\ell$とする.このとき,以下の空欄をうめよ.

(1)$C$と$x$軸の共有点の座標は$[ ]$である.
(2)$C$と$\ell$の接点の座標は$[ ]$である.
(3)$C$と$x$軸および$\ell$で囲まれた部分の面積を$S$とすると,$S=[ ]$である.
青森公立大学 公立 青森公立大学 2012年 第1問
次の[\phantom{ア]}に適する数または式を入れよ.\\
\quad 座標平面内に円$S:x^2+y^2=4$と,円$S$上に異なる2点A$(a,\ b)$,B$(c,\ d)$があり,$ad-bc \neq 0$を満たしている.\\
\quad 点Aにおける円$S$の接線$\ell$の方程式は,$ax+by=[ア]$である.点Bにおける円$S$の接線を$m$とおくと,2直線$\ell$と$m$の交点Pの$x$座標は,$a,\ b,\ c,\ d$を用いて[イ]である.ここで,点Pの座標をP$(p,\ q)$とおくと,直線ABの方程式は,$p,\ q$を用いて[ウ]となる.\\
\quad 次に$0 \leqq \theta \leqq \pi$のとき,$t = \sin \theta + \cos \theta$とおくと,$t$の値のとりうる範囲は[エ]である.また,$t$を用いて$\sin \theta \cos \theta = [オ]$と表せる.このとき,関数$z=2\sin \theta \cos \theta + \sqrt{2}\sin \theta + \sqrt{2} \cos \theta + 6$を$t$を用いて表すと,$z = [カ]$となる.$z$の最大値は[キ]であり,最小値は[ク]となる.最小値をとる$\theta$の値は[ケ]である.\\
\quad 交点P$(p,\ q)$が,原点Oを中心とし$z$の最大値を半径とする円の周上を動くように,2点A,Bが円$S$の周上を動くとき,直線ABが通らない範囲の面積は[コ]である.
青森公立大学 公立 青森公立大学 2012年 第1問
次の[\phantom{ア]}に適する数または式を記入せよ.

(1)点Oを原点とする座標平面内に,2点A$(5,\ 10)$,B$(-2,\ 4)$がある.$\angle \text{AOB} = \theta$とするとき,$\cos \theta = [ア]$であり,$\sin \theta = [イ]$である.また,$\triangle \text{AOB}$の面積は[ウ]であり,内接円の半径$r$は[エ]である.また,外接円の半径$R$は[オ]であり,外心の座標は[カ]である.さらに,重心の座標は[キ]である.
(2)サイコロを3回投げ,出た目の数字を順に$a,\ b,\ c$とする.このとき,2次方程式$ax^2+bx+c=0$が異なる2つの実数解を持つ確率は[ク]である.また,$\log_{(a+b)}c$が整数となる確率は[ケ]であり,ベクトル$(a,\ b)$とベクトル$(c,\ -1)$が直交する確率は[コ]である.
大阪府立大学 公立 大阪府立大学 2012年 第1問
次の文章の[ ]に適する答えを記入せよ.\\
自然数28のすべての約数は1,2,4,7,14,28であり,その和は$1+2+4+7+14+28=56=2 \times 28$となり,28の2倍である.このように,自然数$m$で,そのすべての約数の和が$2m$となるような$m$を完全数よ呼ぶ.以下,$p,\ q$は相異なる素数を表すとする.$m=pq$の形の自然数で完全数となるものを探そう.$p,\ q$が相異なる素数であるから,$pq$の約数は,[ ]の4つであり,その和が$2pq$と等しいから,$\left( [ ] \right) \left( [ ] \right)=2$となる.$XY=2$となる自然数$X,\ Y$は$(X,\ Y)=(1,\ 2),\ (2,\ 1)$の二組しかないから,$p<q$とすると,$p=[ ],\ q=[ ]$となる.したがって,$pq$の形の完全数は[ ]のみということがわかる.
会津大学 公立 会津大学 2012年 第1問
次の空欄をうめよ.

(1)次の積分を求めよ.

(i) $\displaystyle \int_1^4 \sqrt{x} \, dx=[ ]$
(ii) $\displaystyle \int_0^{\frac{\pi}{2}} \sin^2 x \cos x \, dx=[ ]$

(2)$2$つのベクトル$\overrightarrow{a}=(1,\ 3)$,$\overrightarrow{b}=(2,\ -1)$に対して,$|\overrightarrow{a}+t \overrightarrow{b}|$は$t=[ ]$のとき,最小値$[ ]$をとる.
(3)$0 \leqq \theta \leqq \pi$において$\sin 2\theta-2 \cos \theta=0$のとき,$\theta=[ ]$である.
(4)不等式$\log_3(2x-3)<2$をみたす$x$の値の範囲は$[ ]$である.
(5)$4$つの袋があり,各袋に赤,青,黄の玉が$1$つずつ入っている.各袋から$1$つずつ玉を取り出すとき,取り出した$4$つの玉がすべて同じ色である確率は$[ ]$であり,$2$種類の色である確率は$[ ]$である.
会津大学 公立 会津大学 2012年 第2問
$\triangle \mathrm{OAB}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とする.辺$\mathrm{OA}$を$1:3$に内分する点を$\mathrm{C}$とし,辺$\mathrm{OB}$を$4:1$に内分する点を$\mathrm{D}$とする.線分$\mathrm{AD}$と線分$\mathrm{BC}$の交点を$\mathrm{E}$とする.このとき,以下の空欄をうめよ.

(1)$\mathrm{AE}:\mathrm{ED}=s:(1-s)$とおくとき,$\overrightarrow{\mathrm{OE}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$s$を用いて表すと,$\overrightarrow{\mathrm{OE}}=[ ]$である.
(2)$\mathrm{BE}:\mathrm{EC}=t:(1-t)$とおくとき,$\overrightarrow{\mathrm{OE}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$t$を用いて表すと,$\overrightarrow{\mathrm{OE}}=[ ]$である.
(3)(1)と(2)を比較して$s,\ t$を求め,$\overrightarrow{\mathrm{OE}}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表すと,$\overrightarrow{\mathrm{OE}}=[ ]$である.
宮城大学 公立 宮城大学 2012年 第1問
次の空欄$[ア]$から$[カ]$にあてはまる数や式を書きなさい.

$2$つの曲線
\[ C:y=x^3+ax^2 \quad \text{と} \quad D:y=a(x-b)^2 \quad (ab \neq 0) \]
について,点$\mathrm{P}$を$C$と$D$の交点とし,$\mathrm{P}$の$x$座標を$p$とする.
$\mathrm{P}$における$C$の接線の方程式は
\[ y=\left( [ア] \right) x+[イ] \]
で,$\mathrm{P}$における$D$の接線の方程式は
\[ y=\left( [ウ] \right) x+[エ] \]
である.
また,$C$と$D$が$\mathrm{P}$で接するとき,$b,\ p$を$a$を用いて表せば,
\[ b=[オ],\quad p=[カ] \]
となる.
宮城大学 公立 宮城大学 2012年 第2問
次の空欄$[サ]$から$[ニ]$にあてはまる数や式を書きなさい.

$x$が範囲$0 \leqq x<2\pi$を動くとき,$x$の関数$f(x)=2 \sin x+\cos 2x+1$を考える.
$X=\sin x$とおき,$f(x)$を$X$の関数と見て$g(X)$と書くと,
\[ g(X)=[サ]X^2+[シ]X+[ス] \]
と書ける.
$x$は$0 \leqq x<2\pi$を動くから,$X$は$[セ] \leqq X \leqq [ソ]$を動くが,この範囲では,グラフの形より,$g(X)$は$X=[タ]$のとき最小値$[チ]$をとり,$X=[ツ]$のとき最大値$[テ]$をとる.
したがって,$f(x)=2 \sin x+\cos 2x+1$は$x=[ト]$のとき最小値$[チ]$をとり,$x=[ナ]$または$[ニ]$のとき最大値$[テ]$をとる.
宮城大学 公立 宮城大学 2012年 第3問
次の空欄$[ハ]$から$[マ]$にあてはまる数や式を書きなさい.

$\mathrm{O}$を原点とする座標空間において,$3$点
\[ \mathrm{A} \left( \frac{1}{a},\ 0,\ 0 \right),\quad \mathrm{B} \left( 0,\ \frac{1}{b},\ 0 \right),\quad \mathrm{C} \left( 0,\ 0,\ \frac{1}{c} \right) \]
$(a,\ b,\ c>0)$をとる.平面$\mathrm{ABC}$上に点$\mathrm{H}$をとり,$\overrightarrow{\mathrm{AH}}=t \overrightarrow{\mathrm{AB}}+u \overrightarrow{\mathrm{AC}}$($t,\ u$は定数)とおく.このとき,
\[ \overrightarrow{\mathrm{OH}} \cdot \overrightarrow{\mathrm{AB}}=[ハ],\quad \overrightarrow{\mathrm{OH}} \cdot \overrightarrow{\mathrm{AC}}=[ヒ] \]
となる.
したがって,$\mathrm{OH}$が平面$\mathrm{ABC}$に垂直であるとすると,$\mathrm{H}$の座標は
\[ \left( [フ],\ [ヘ],\ [ホ] \right) \]
となる.また,このとき$\overrightarrow{\mathrm{AH}} \cdot \overrightarrow{\mathrm{BC}}=[マ]$となる.
スポンサーリンク

「空欄補充」とは・・・

 まだこのタグの説明は執筆されていません。