タグ「空欄補充」の検索結果

140ページ目:全1740問中1391問~1400問を表示)
川崎医療福祉大学 私立 川崎医療福祉大学 2012年 第3問
台形$\mathrm{ABCD}$において,辺$\mathrm{BC}$と辺$\mathrm{DA}$が平行であり,$2$つの対角線$\mathrm{AC}$と$\mathrm{BD}$の交点を$\mathrm{E}$とする.
\[ \mathrm{BC}=3,\quad \mathrm{DA}=\sqrt{2},\quad \mathrm{BE}=1,\quad \cos \angle \mathrm{ADB}=\frac{3}{5} \]
とする.

(1)$\displaystyle \mathrm{DE}=\frac{[$24$]}{[$25$]}$,$\displaystyle \mathrm{AE}=\frac{[$26$]}{[$27$]}$,$\displaystyle \mathrm{CE}=\frac{[$28$]}{[$29$]}$である.

(2)三角形$\mathrm{ABE}$の面積は$\displaystyle \frac{[$30$]}{[$31$]}$であり,三角形$\mathrm{CDE}$の面積は$\displaystyle \frac{[$32$]}{[$33$]}$である.

(3)$\displaystyle \sin \angle \mathrm{AEB}=\frac{[$34$]}{[$35$]}$,$\displaystyle \sin \angle \mathrm{DAC}=\frac{[$36$]}{[$37$]}$である.
慶應義塾大学 私立 慶應義塾大学 2012年 第2問
以下の問の$[$40$]$~$[$49$]$に当てはまる適切な数値またはマイナス符号($-$)をマークしなさい.

$y=|f(x)|$のグラフと$2$直線$\ell,\ m$に囲まれた部分の面積を考える.ただし$f(x)$は,等式
\[ f(x)=\frac{1}{4}x^2+\frac{15}{4} \int_{-2}^0 xf(t) \, dt-\frac{4}{3} \int_{-3}^3 \{f(t)+6\} \, dt \]
を満たし,直線$\ell$は$y=|f(x)|$の$x=8$における接線である.また直線$m$は,直線$\ell$と$y=|f(x)|$の交点と点$(1,\ 3)$の$2$点を通る,傾き負の直線である.

(1)$\displaystyle f(x)=\frac{[$40$]}{[$41$]}x^2-[$42$]x-[$43$]$である.

(2)直線$m$の方程式は$y=-[$44$]x+[$45$]$である.
(3)$y=|f(x)|$のグラフと$2$直線$\ell,\ m$に囲まれた部分の面積は$\displaystyle \frac{[$46$][$47$][$48$]}{[$49$]}$である.
慶應義塾大学 私立 慶應義塾大学 2012年 第3問
以下の問の$[$50$]$~$[$63$]$に当てはまる適切な数値またはマイナス符号($-$)をマークしなさい.

関数$\displaystyle y=-4a \sin^2 \frac{\theta}{2}-3 \sin 2\theta-4 \cos 2\theta-6a \sin \theta+2a+10$がある.

(1)$3 \sin \theta-\cos \theta=t$とおくと,$y=t^2-[$50$]at+[$51$]$である.
(2)$a$の値の範囲が$-5<a<5$のとき,この関数の最大値$y_{\max}$のとりうる値の範囲は
\[ [$52$][$53$] \leqq y_{\max}<[$54$][$55$]+[$56$][$57$] \sqrt{[$58$][$59$]} \]
である.
(3)この関数の最小値が$-15$であるとき$\displaystyle a=\pm \frac{[$60$] \sqrt{[$61$][$62$]}}{[$63$]}$である.
慶應義塾大学 私立 慶應義塾大学 2012年 第4問
以下の問の$[$64$]$~$[$73$]$に当てはまる適切な数値またはマイナス符号($-$)をマークしなさい.

$xy$平面上に原点$\mathrm{O}(0,\ 0)$を中心とする円$C$と,$2$つの直線$\ell_1$,$\ell_2$がある.ただし,$a>1$とする.


円$C$ \quad\!\! :$x^2+y^2=1$
直線$\ell_1$:$\displaystyle x+\sqrt{2}y=\frac{\sqrt{3}}{a}$
直線$\ell_2$:$\displaystyle x+\sqrt{2}y=a \sqrt{3}$


円$C$と直線$\ell_1$は異なる$2$点$\mathrm{A}$,$\mathrm{B}$で交わり,それぞれの$x$座標を$x_\mathrm{A}$,$x_\mathrm{B}$とおくと,$x_\mathrm{A}<x_\mathrm{B}$である.また,直線$\ell_2$上に,$x$座標および$y$座標が共に正であるような点$\mathrm{P}$をとる.三角形$\mathrm{APB}$において,$\angle \mathrm{APB}=\theta$とすると,$\displaystyle \cos \theta=\frac{1}{a} \sqrt{a^2-1}$であり,四角形$\mathrm{OAPB}$の面積は$2 \sqrt{6}$である.

(1)線分$\mathrm{AB}$の長さは$\displaystyle \frac{[$64$] \sqrt{[$65$]}}{[$66$]}$である.

(2)$\angle \mathrm{OBP}=\frac{[$67$]}{[$68$]} \pi+\frac{[$69$]}{[$70$]} \theta$である.

(3)三角形$\mathrm{OBP}$の面積は$\displaystyle \frac{[$71$] \sqrt{[$72$]}}{[$73$]}$である.
成城大学 私立 成城大学 2012年 第2問
次の文章内の$[ア]$~$[コ]$に適当な式または数値を入れよ.ただし,$[ク]$~$[コ]$はそれぞれ$3$つの自然数の組である.

(1)$xy$平面上で,点$(-1,\ 0)$を通る傾き$t$の直線を考える.この直線が円$x^2+y^2=1$と点$(x,\ y)$(ただし,$x>0$,$y>0$)で交わるとき,$y$は$t$と$x$で,
\[ y=[ア] (ⅰ) \]
のように表される.この式を円の方程式$x^2+y^2=1$に代入して,$x$に関する$2$次方程式$[イ]=0$を得る.
この方程式を解いて,
\[ x=[ウ] (ⅱ) \]
を得る.また,式$(ⅰ)$から,
\[ y=[エ] (ⅲ) \]
となる.ただし,$t$の範囲は$0<t<[オ]$である.
(2)円$x^2+y^2=1$上の点$(x,\ y)$(ただし,$x>0$,$y>0$)の各座標がともに有理数であるとき,式$(ⅰ)$より$t$は有理数である.よって,$m,\ n$(ただし,$m>n$)を互いに素な自然数として$\displaystyle t=\frac{n}{m}$と表せば,式$(ⅱ)$,$(ⅲ)$より点$(x,\ y)$は
\[ x=\frac{[カ]}{m^2+n^2},\quad y=\frac{[キ]}{m^2+n^2} \]
と表される.
(3)等式$a^2+b^2=c^2$が成り立つような$3$つの自然数の組$(a,\ b,\ c)$(ただし,$a<b$)で,$a,\ b,\ c$の最大公約数が$1$,かつ$a<9$である組は
$(a,\ b,\ c)=(3,\ 4,\ 5),\ [ク],\ [ケ],\ [コ]$の$4$つである.
愛知学院大学 私立 愛知学院大学 2012年 第1問
次の空欄を埋めなさい.

(1)不等式$|x^2-4x-5|<x+1$を満たす$x$の範囲は$[ア]$である.
(2)不等式$-2<\log_{0.1}x<2$を満たす$x$の範囲は$[イ]$である.
(3)$4$次方程式$x^4+3x^2+4=0$の解は$[ウ]$である.
愛知学院大学 私立 愛知学院大学 2012年 第1問
次の数の大小を比べ,空欄に不等号を入れなさい.

(1)$\sqrt[3]{16} \ [ア] \sqrt[4]{32}$
(2)$\log_3 10 \ [イ] \log_9 90$
(3)$2 \ [ウ] \log_3 5+\log_5 3$
愛知学院大学 私立 愛知学院大学 2012年 第1問
$xy=1000$,$x \geqq 10$,$\displaystyle y \geqq \frac{1}{10}$とする.

(1)$\log_{10}x$は,$x=\kakkofive{ア}{イ}{ウ}{エ}{オ}$のとき最大値$[カ]$をとる.
(2)$\log_{10}x \cdot \log_{10}y$は
\[ x=[キ][ク] \sqrt{[ケ][コ]},\quad y=[サ][シ] \sqrt{[ス][セ]} \]
のときに最大値$\displaystyle \frac{[ソ]}{[タ]}$をとり,
\[ x=\kakkofive{チ}{ツ}{テ}{ト}{ナ},\quad y=\frac{[ニ]}{[ヌ][ネ]} \]
のときに最小値$[ノ][ハ]$をとる.
愛知学院大学 私立 愛知学院大学 2012年 第2問
$a>0$とする.放物線$y=ax^2+bx+c$は$2$点$(1,\ 1)$,$(3,\ 2)$を通り,この放物線と$2$点$(1,\ 1)$,$(3,\ 2)$を通る直線で囲まれた図形の面積は$4$になるという.このとき
\[ a=[ア],\quad b=\frac{[イ][ウ][エ]}{[オ]},\quad c=\frac{[カ][キ]}{[ク]} \]
である.
愛知学院大学 私立 愛知学院大学 2012年 第3問
三角形$\mathrm{ABC}$の角$\mathrm{A}$の二等分線と辺$\mathrm{BC}$の交点を$\mathrm{D}$とする.$\mathrm{AB}=x$とおく.$\mathrm{BD}=3$,$\mathrm{CD}=2$のとき,
\[ \cos \angle \mathrm{B}=\frac{x^2+[ア][イ]}{[ウ][エ]x} \]
である.さらに$\mathrm{AD}=2$であるならば
\[ \cos \angle \mathrm{B}=\frac{[オ] \sqrt{[カ][キ]}}{[ク]} \]
である.
スポンサーリンク

「空欄補充」とは・・・

 まだこのタグの説明は執筆されていません。