タグ「空欄補充」の検索結果

133ページ目:全1740問中1321問~1330問を表示)
神戸薬科大学 私立 神戸薬科大学 2012年 第1問
以下の文中の$[ ]$の中にいれるべき数または式等を求めて記入せよ.

(1)$10 \%$の食塩水と$15 \%$の食塩水を混ぜて$12 \%$以上$13 \%$以下の食塩水$1000 \mathrm{g}$を作るには,$10 \%$の食塩水を$[ ] \mathrm{g}$以上$[ ] \mathrm{g}$以下にすればよい.
(2)$20$から$200$までの整数について$6$で割って$3$余る数の総和を求めると$[ ]$である.
(3)$x^2-2xy+y^2+3x-3y+2$を因数分解すると$[ ]$である.
(4)$m<\log_4 25<m+1$を満たす整数$m$を求めると$m=[ ]$である.
(5)$2^{3-\log_2 x}-2^{\frac{2}{\log_x 4}}+2=0$を$x$について解くと$x=[ ]$である.
藤田保健衛生大学 私立 藤田保健衛生大学 2012年 第1問
座標平面上の点$\mathrm{A}$を通る$2$つの曲線$C_1,\ C_2$の点$\mathrm{A}$における接線に対して,これらの接線のなす角$\displaystyle \theta \left( \text{ただし} 0 \leqq \theta \leqq \frac{\pi}{2} \right)$を点$\mathrm{A}$における$2$曲線$C_1$と$C_2$のなす角と呼ぶことにする.

(1)$2$次方程式$x^2-1=ax+b$が重解をもつとき,$a$と$b$の間に$b=[$1$]$の関係式が成り立つ.
(2)放物線$y=x^2-1$の点$(1,\ 0)$における接線の方程式は$y=[$2$]$である.
(3)点$(1,\ 0)$における$2$曲線$y=x^2-1$と$y=x^3+3x^2-3x-1$のなす角$\theta$に対して,$\tan \theta$の値は$[$3$]$である.
藤田保健衛生大学 私立 藤田保健衛生大学 2012年 第4問
次は,下図で示されたような原子力発電所等でみられる冷却塔のモデルである.
\[ f(x)=\frac{x-3}{2}+\frac{2}{x-5},\quad 0 \leqq x \leqq \frac{7}{2} \]
とするとき$y=f(x)$のグラフを$x$軸のまわりに$1$回転させてできる図形を考える.
(図は省略)

(1)$f(x)$は$x=[$13$]$において最大値$[$14$]$をとり,$x=[$15$]$において最小値$[$16$]$をとる.
(2)この図形の内部の体積は$[$17$]$である.
神戸薬科大学 私立 神戸薬科大学 2012年 第2問
以下の文中の$[ ]$の中にいれるべき数または式等を求めて記入せよ.

(1)平面上に$\triangle \mathrm{ABC}$と点$\mathrm{P}$があり,次の式を満たしている.
\[ 2 \overrightarrow{\mathrm{AP}}+3 \overrightarrow{\mathrm{BP}}+4 \overrightarrow{\mathrm{CP}}=\overrightarrow{\mathrm{0}} \]

(i) $\overrightarrow{\mathrm{AP}}=[ ] \overrightarrow{\mathrm{AB}}+[ ] \overrightarrow{\mathrm{AC}}$である.
(ii) $2$直線$\mathrm{AP}$,$\mathrm{BC}$の交点を$\mathrm{Q}$とする.点$\mathrm{Q}$は線分$\mathrm{BC}$を$[ ]$の比に内分する.また点$\mathrm{P}$は線分$\mathrm{AQ}$を$[ ]$の比に内分する.

(2)円に内接する四角形$\mathrm{ABCD}$において$\mathrm{AB}=1$,$\mathrm{AD}=2$,$\angle \mathrm{BCD}={60}^\circ$であるとき$\mathrm{BD}=[ ]$であり,外接円の半径$R=[ ]$である.また$\mathrm{CD}=3 \mathrm{BC}$のとき$\mathrm{BC}=[ ]$であり,四角形$\mathrm{ABCD}$の面積は$[ ]$である.
神戸薬科大学 私立 神戸薬科大学 2012年 第3問
以下の文中の$[ ]$の中にいれるべき数または式等を求めて記入せよ.

(1)互いに異なる$6$個の薬品がある.この$6$個の薬品を$3$つのグループに分けたい.

$1$個,$2$個,$3$個に分ける方法は$[ ]$通りである.
$1$個,$1$個,$4$個に分ける方法は$[ ]$通りである.
$2$個,$2$個,$2$個に分ける方法は$[ ]$通りである.

(2)$2012$を$2$つ以上のいくつかの連続した自然数の和で表したい.連続した自然数を$a,\ a+1,\ a+2,\ \cdots,\ a+n$と表したとき,その和$S$を$a$と$n$で表すと$S=[ ]$である.また,この連続した自然数をすべてあげると$[ ]$である.
法政大学 私立 法政大学 2012年 第3問
三角形$\mathrm{ABC}$において,$\mathrm{CA}=\mathrm{CB}=3$,$\mathrm{AB}=4$である.また,$\overrightarrow{\mathrm{CA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{CB}}=\overrightarrow{b}$とおく.

(1)$\cos \angle \mathrm{BCA}=\frac{[ア]}{[イ]}$である.また,三角形$\mathrm{ABC}$の外接円の半径は$\displaystyle \frac{[ウ] \sqrt{[エ]}}{[オカ]}$である.
(2)$\overrightarrow{a} \cdot \overrightarrow{b}=[キ]$である.
(3)点$\mathrm{C}$を通り直線$\mathrm{AB}$に直交する直線$\ell$と$\mathrm{AB}$の交点を$\mathrm{M}$とすると,
$\displaystyle \overrightarrow{\mathrm{CM}}=\frac{[ク]}{[ケ]} \left( \overrightarrow{a}+\overrightarrow{b} \right)$である.また,点$\mathrm{B}$を通り直線$\mathrm{CA}$に直交する直線と$\ell$の交点を$\mathrm{H}$とすると,$\displaystyle \overrightarrow{\mathrm{CH}}=\frac{[コ]}{[サシ]} \left( \overrightarrow{a}+\overrightarrow{b} \right)$である.
次に,三角形$\mathrm{ABC}$の外心を$\mathrm{O}$とすると,$\displaystyle \mathrm{OH}=\frac{[ス] \sqrt{[セ]}}{[ソタ]}$である.
法政大学 私立 法政大学 2012年 第4問
次の問題は,生命科学部生命機能学科植物医科学専修を志望する受験生のみ解答せよ.
$t$を正の定数とする.曲線$y=x^3-x$を$C$,$C$上の点$\mathrm{P}(t,\ t^3-t)$における接線を$\ell$とする.$\ell$の方程式は
\[ y=\left( [ア] t^2-[イ] \right) x-[ウ] t^3 \]
である.
$C$と$\ell$の,$\mathrm{P}$以外の共有点を$\mathrm{Q}$とすると,$\mathrm{Q}$の$x$座標は$[エオ] t$である.
$\mathrm{Q}$における$C$の接線を$m$とすると,$m$の方程式は
\[ y=\left( [カキ] t^2-[イ] \right)x+[クケ] t^3 \]
である.
$C$と$m$の,$\mathrm{Q}$以外の共有点を$\mathrm{R}$とすると,$\mathrm{R}$の$x$座標は$[コ] t$であり,
\[ \overrightarrow{\mathrm{QP}} \cdot \overrightarrow{\mathrm{QR}}=18 \left( [サシ] t^6-[スセ] t^4+[ソ] t^2 \right) \]
となる.ここで,
\[ f(t)=\frac{\overrightarrow{\mathrm{QP}} \cdot \overrightarrow{\mathrm{QR}}}{18t^6} \]
とおくと,$\displaystyle t=\frac{[タ] \sqrt{[チツ]}}{[チツ]}$のとき,$f(t)$は最小値$\displaystyle \frac{[テト]}{[ナ]}$をとる.
藤田保健衛生大学 私立 藤田保健衛生大学 2012年 第2問
糸の長さ$L$,おもりの質量$m$の振り子の振れの角(水平面に垂直な直線と糸がなす角)の大きさを$\theta$とすると,$\theta$は時刻$t$の関数として
\[ mL \frac{d^2 \theta}{dt^2}=-mg \theta \cdots\cdots (*) \]
を満たす.ただし重力加速度$g$は一定とする.

(1)$\theta=a \cos (2 \pi \nu t+\delta)$(ただし$\nu,\ a,\ \delta$は定数で$\nu>0$,$a \neq 0$)が時刻$t=t_1$で極大値をとり,その後初めて極小値をとる時刻を$t=t_2$とするとき,$t_2-t_1=[$4$]$である.
(2)$(1)$の$\theta$が$(*)$を満たすとき,$\nu$を求めると$\nu=[$5$]$である.
(3)$(2)$の$\theta$に対して時刻$t$におけるこの振り子のエネルギー$E(t)$を
\[ E(t)=\frac{1}{2} mL^2 \left( \frac{d\theta}{dt} \right)^2+\frac{1}{2}mgL \theta^2 \]
で与えるものとする.このとき$\displaystyle \frac{dE(t)}{dt}=[$6$]$である.
藤田保健衛生大学 私立 藤田保健衛生大学 2012年 第3問
次の問いに答えよ.

(1)連立$1$次方程式
\[ \left\{ \begin{array}{l}
5x-y=kx \\
6x-2y=ky
\end{array} \right. \]
が$(x,\ y)=(0,\ 0)$以外の解をもつような$k$を$k_1,\ k_2$(ただし$k_1<k_2$)とおくと,$k_1=[$7$]$,$k_2=[$8$]$である.
(2)$(1)$で求めた$k_1$に対して$(x,\ y)=(1,\ a)$,$k_2$に対して$(x,\ y)=(b,\ 1)$が各々上の連立$1$次方程式を満たすとき,行列$A$と$P$を
\[ A=\left( \begin{array}{cc}
5 & -1 \\
6 & -2
\end{array} \right),\quad P=\left( \begin{array}{cc}
1 & b \\
a & 1
\end{array} \right) \]
とおくと$P^{-1}AP=[$9$]$となる.これより自然数$n$に対して$A^n=[$10$]$である.
(3)自然数$n$に対して漸化式
\[ \left\{ \begin{array}{l}
a_{n+1}=5a_n-b_n \\
b_{n+1}=6a_n-2b_n
\end{array} \right. ,\quad a_1=1,\ b_1=2 \]
を満たす数列$\{a_n\},\ \{b_n\}$の一般項を求めると,$a_n=[$11$]$,$b_n=[$12$]$である.
大阪工業大学 私立 大阪工業大学 2012年 第3問
次の空所を埋めよ.

数列$\{a_n\}$の初項から第$n$項までの和$a_1+a_2+\cdots +a_n$を$S_n$とおく.この$S_n$が関係式$S_n=2a_n-3n (n=1,\ 2,\ \cdots)$をみたすとき,$a_n$の一般項を求めたい.
$S_1=a_1$だから,$a_1=[ア]$であり,同様に,$a_2=[イ]$である.$S_{n+1}=S_n+a_{n+1}$だから,数列$\{a_n\}$は$a_{n+1}=\alpha a_n+\beta$の形の漸化式をみたす.このとき,$\alpha=[ウ]$,$\beta=[エ]$である.数列$\{a_n+\beta\}$は初項$[オ]$,公比$[カ]$の等比数列であるから,数列$\{a_n\}$の一般項は$a_n=[キ]$である.
スポンサーリンク

「空欄補充」とは・・・

 まだこのタグの説明は執筆されていません。