タグ「空欄補充」の検索結果

132ページ目:全1740問中1311問~1320問を表示)
東北医科薬科大学 私立 東北医科薬科大学 2012年 第2問
$xy$平面に三角形$\mathrm{ABC}$があり,
\[ \angle \mathrm{ABC}=60^\circ,\quad \angle \mathrm{BAC}=105^\circ,\quad \mathrm{BC}=1+\sqrt{3} \]
であるという.このとき,次の問に答えなさい.

(1)$\mathrm{AB}=[アイ]+\sqrt{[ウ]}$,$\mathrm{AC}=\sqrt{[エ]}$である.

(2)三角形$\mathrm{ABC}$の面積は$\displaystyle \frac{\sqrt{[オ]}}{[カ]}$である.
(3)点$\mathrm{A}$を通り$xy$平面に垂直な直線上の点$\mathrm{D}$を$\mathrm{AD}=4$となるように$xy$平面の上方にとる.また,点$\mathrm{B}$を通り$xy$平面に垂直な直線上の点$\mathrm{E}$を$\mathrm{BE}=3$となるように$xy$平面の上方にとる.また,点$\mathrm{C}$を通り$xy$平面に垂直な直線上の点$\mathrm{F}$を$\angle \mathrm{DEF}=90^\circ$となるようにとる.このとき,$\mathrm{CF}=[キ]$で,三角形$\mathrm{DEF}$の面積を$S$とおくと$\displaystyle S^2=\frac{[クケ]}{[コ]}$である.
東北医科薬科大学 私立 東北医科薬科大学 2012年 第3問
点$\mathrm{A}_1$,$\mathrm{A}_2$,$\mathrm{A}_3$,$\mathrm{A}_4$,$\mathrm{A}_5$と点$\mathrm{B}_1$,$\mathrm{B}_2$,$\mathrm{B}_3$,$\mathrm{B}_4$,$\mathrm{B}_5$が次のように並んでいる.
\[ \begin{array}{ccccc}
\mathrm{A}_1 & \mathrm{A}_2 & \mathrm{A}_3 & \mathrm{A}_4 & \mathrm{A}_5 \\
\bullet & \bullet & \bullet & \bullet & \bullet \\ \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\mathrm{B}_1 & \mathrm{B}_2 & \mathrm{B}_3 & \mathrm{B}_4 & \mathrm{B}_5
\end{array} \]
各点$\mathrm{A}_i (1 \leqq i \leqq 5)$に対し,それぞれすべて異なる点$\mathrm{B}_j (1 \leqq j \leqq 5)$を$1$つずつ選んで線分で結ぶ.こうしてできた$5$本の線分を次のような集まりに分ける分け方を考える.

(i) 他の線分と交わらない線分はその線分だけで$1$つの集まりとする.
(ii) 他の線分と交わる線分は,その線分と交わる線分,及び,これらのいずれかに交わる線分を繰り返しすべて集めて$1$つの集まりとする.

例えば,次は集まりの個数が$3$個となる分け方である.
(図は省略)
また,次は集まりの個数が$2$個となる分け方である.
(図は省略)
このとき,次の問に答えなさい.

(1)集まりの個数が$5$個となる分け方は全部で$[ア]$通りである.
(2)集まりの個数が$4$個となる分け方は全部で$[イ]$通りである.
(3)集まりの個数が$3$個となる分け方は全部で$[ウエ]$通りである.
(4)集まりの個数が$2$個となる分け方は全部で$[オカ]$通りである.
中部大学 私立 中部大学 2012年 第1問
次の$[ア]$から$[ス]$にあてはまる数字または符号を記入せよ.

(1)$\displaystyle \frac{1}{1+\sqrt{2}+\sqrt{3}+\sqrt{6}}+\frac{1}{1-\sqrt{2}+\sqrt{3}-\sqrt{6}}=[ア]-\sqrt{[イ]}$

(2)赤玉$3$個,青玉$3$個,白玉$2$個がある.$1$列に並べる並べ方は$[ウ][エ][オ]$通りある.
(3)三角形$\mathrm{ABC}$において,$\mathrm{AB}=\sqrt{6}$,$\mathrm{AC}=2$,$\angle \mathrm{A}=75^\circ$である.辺$\mathrm{BC}$上に$\angle \mathrm{BAD}=30^\circ$になるように点$\mathrm{D}$をとる.このとき,$\mathrm{BC}=\sqrt{[カ]}+[キ]$であり,$\mathrm{AD}=[ク] \sqrt{[ケ]}-\sqrt{[コ]}$である.
(4)$\displaystyle \int_1^x (x-t)f(t) \, dt=x^4-2x^2+1$を満たす関数は,$f(x)=[サ][シ]x^2-[ス]$である.
福岡大学 私立 福岡大学 2012年 第1問
次の$[ ]$をうめよ.

(1)どのような実数$x$に対しても,不等式$x^2+ax+a>-2x^2+x+1$が成り立つ定数$a$の値の範囲は$[ ]$である.
また,$2$つの放物線$y=x^2+ax+a$と$y=-2x^2+x+1$が点$\mathrm{A}$を共有し,その点で共通な接線をもつとき,点$\mathrm{A}$の座標は$[ ]$である.
(2)$a=3^{96}$のとき,$\sqrt[3]{a}$は$[ ]$桁の整数である.また,$\displaystyle \frac{1}{\sqrt{a}}$は,小数第$[ ]$位に初めて$0$でない数が現れる.ただし,$\log_{10}3=0.4771$とする.
(3)$0 \leqq x \leqq \pi$のとき,方程式$\displaystyle \sin x+\cos x+\sin 2x=-\frac{1}{2}$の解は,$x=[ ]$である.また,$\displaystyle -\frac{\pi}{2}<y<\frac{\pi}{2}$のとき,$\displaystyle \sin y+\sqrt{3} \cos y+4 \cos^2 \left( y+\frac{\pi}{3} \right)=4$の解は,$y=[ ]$である.
福岡大学 私立 福岡大学 2012年 第2問
次の$[ ]$をうめよ.

(1)方程式$x^2+2mx+y^2-2(m+1)y+3m^2-4m+6=0$が円を表すとき,$m$の値の範囲は$[ ]$である.また,この円の半径が最大となるとき,その円と直線$y=kx+4$とが共有点をもつための$k$の値の範囲は$[ ]$である.
(2)$10$本のくじの中に当たりくじが$k$本入っている.ただし,$0<k<10$とする.$\mathrm{A}$がくじを$1$本引き,その引いたくじをもとに戻さないで,続いて$\mathrm{B}$がくじを$1$本引く.このとき,$\mathrm{A}$と$\mathrm{B}$がどちらも当たる確率が$\displaystyle \frac{1}{5}$以下となるのは,$k$が$[ ]$以下のときである.また,$\mathrm{A}$と$\mathrm{B}$がどちらもはずれてしまう確率が$\displaystyle \frac{1}{10}$以下となるのは,$k$が$[ ]$以上のときである.
北海道薬科大学 私立 北海道薬科大学 2012年 第2問
次の各設問に答えよ.

(1)空間内に点$\mathrm{A}(2,\ 0,\ 0)$,$\mathrm{B}(0,\ 2,\ 0)$,$\mathrm{C}(0,\ 0,\ 4)$がある.$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が定める平面上に原点$\mathrm{O}$から垂線を下ろし,この平面との交点を$\mathrm{P}$とする.
\[ \overrightarrow{\mathrm{OP}}=a \overrightarrow{\mathrm{OA}}+b \overrightarrow{\mathrm{OB}}+c \overrightarrow{\mathrm{OC}} \quad (a,\ b,\ c \text{は実数}) \]
とすると$a+b+c=[ア]$となる.また

$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{AB}}=[イウ] a+[エ] b=[オ]$

$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{AC}}=[カキ] a+[クケ] c=[コ]$

となる.よって,点$\mathrm{P}$の座標は$\displaystyle \left( \frac{[サ]}{[シ]},\ \frac{[ス]}{[セ]},\ \frac{[ソ]}{[タ]} \right)$となる.
(2)$4$個のさいころを同時に投げるとき,出た目の積が偶数になる確率は$\displaystyle \frac{[チツ]}{[テト]}$である.また,出た目の積が偶数になる確率が$0.994$以上になるには,同時に投げるさいころの数は最低$[ナ]$個必要である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
北海道薬科大学 私立 北海道薬科大学 2012年 第3問
円$C:x^2+y^2-6x-4y+8=0$と直線$\ell:y=mx-2m-1$($m$は実数)がある.

(1)円$C$の中心$\mathrm{C}$の座標は$([ア],\ [イ])$,半径は$\sqrt{[ウ]}$である.
(2)$\ell$は$m$の値にかかわらず点$\mathrm{A}$を通る.その座標は$([エ],\ [オカ])$である.
(3)$\ell$が$C$と接するのは
\[ m=[キク] \qquad \cdots\cdots① \]

\[ m=\frac{[ケ]}{[コ]} \qquad \cdots\cdots② \]
のときである.
$①$のときの接点を$\mathrm{B}$,$②$のときの接点を$\mathrm{D}$とすると,四角形$\mathrm{ABCD}$から中心角が$\angle \mathrm{BCD}$の扇形を除いた図形の面積は
\[ [サ]-\frac{[シ]}{[ス]} \pi \]
となる.ただし,$0^\circ< \angle \mathrm{BCD}<180^\circ$とする.
北海道薬科大学 私立 北海道薬科大学 2012年 第4問
関数$f(x)=x^3-2x^2$に対して,曲線$C$を$y=f(x)$で定義する.

(1)$C$上の点$(t,\ f(t))$における接線の方程式は
\[ y=([ア]t^2-[イ]t)(x-t)+t^3-[ウ]t^2 \]
である.
(2)$C$上の点$(a_n,\ f(a_n))$における接線が$C$上の他の点$(a_{n+1},\ f(a_{n+1}))$で交わるとすると
\[ a_{n+1}=[エオ]a_n+[カ] \quad (n=1,\ 2,\ 3,\ \cdots) \]
が成り立つ.この式を$a_{n+1}-p=q(a_n-p)$とおくと,定数$p,\ q$の値は
\[ p=\frac{[キ]}{[ク]},\quad q=[ケコ] \]
となる.
(3)$a_1=3$のとき,$(2)$の結果より
\[ a_n=\frac{[サ]}{[シ]}+\frac{[ス]}{[セ]}([ソタ])^{n-1} \]
が得られる.
東京理科大学 私立 東京理科大学 2012年 第1問
次の問いに答えよ.

(1)実数$\theta$に対し,$\mathrm{O}(0,\ 0,\ 0)$を原点とする座標をもつ空間において,$3$点
\[ \mathrm{P}(\cos \theta,\ \sin \theta,\ 0),\quad \mathrm{Q}(0,\ \cos \theta,\ \sin \theta),\quad \mathrm{R}(0,\ \cos 2\theta,\ \sin 2\theta) \]
を考える.

(i) $\theta$が$-\pi \leqq \theta<\pi$の範囲を動くとき,$\mathrm{PQ}^2$の最大値は$[ア]$であり,最大値を与える$\theta$の値は$\displaystyle -\frac{[イ]}{[ウ]} \pi$と$\displaystyle \frac{[エ]}{[オ]} \pi$である.
(ii) ベクトル$\overrightarrow{\mathrm{OP}}$,$\overrightarrow{\mathrm{OR}}$のなす角を$\alpha$とする.$\theta$が$\displaystyle \frac{\pi}{6} \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,$\cos \alpha$の最大値は$\displaystyle \frac{[カ]}{[キ]}$であり,最大値を与える$\theta$の値は$\displaystyle \frac{[ク]}{[ケ]} \pi$である.$\theta$が$\displaystyle -\frac{\pi}{6} \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,$\cos \alpha$の最大値は$\displaystyle \frac{\sqrt{[コ]}}{[サ]}$である.$\theta$が$\displaystyle -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,$\cos \alpha$の最大値は$[シ]$であり,最大値を与える$\theta$の値は$\displaystyle -\frac{[ス]}{[セ]} \pi$である.

(2)零行列でない$2$次の正方行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$が,等式$A^2=4A$を満たしているとする.

(i) $bc=0$のとき,$a+d$の値は$[ソ]$または$[タ]$である.また,$bc \neq 0$のとき,$a+d=[チ]$,$ad-bc=[ツ]$となる.特に,$b=c>0$とすると,
\[ A=\left( \begin{array}{cc}
a & \sqrt{([テ]-[ト]a)a} \\
\sqrt{([ナ]-[ニ]a)a} & [ヌ]-[ネ]a
\end{array} \right) \]
となる.
(ii) 自然数$n$に対し,
\[ \sum_{k=1}^n \comb{n}{k} 4^k 3^{n-k}=[ノ]^n-[ハ]^n \]
であるから,
\[ (A+3E)^n=\frac{[ヒ]}{[フ]} ([ヘ]^n-[ホ]^n)A+[マ]^n E \]
となる.ここで,$E$は$2$次の単位行列を表す.
昭和薬科大学 私立 昭和薬科大学 2012年 第1問
次の問いに答えよ.

(1)$\log_{10}3=a$,$\log_{10}5=b$のとき,$\log_{\frac{3}{2}}48$を$a,\ b$で表すと$\displaystyle \frac{a-[ ]b+[ ]}{a+[ ]b-[ ]}$である.
(2)関数$\displaystyle y=12 \sin \theta+5 \cos \theta \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right)$について,$y$の取り得る値の範囲は$[ ] \leqq y \leqq [ ]$である.
(3)ある$2$次関数のグラフを$x$軸方向に$4$,$y$軸方向に$-6$平行移動すると,$y=-x^2+6x+6$と一致する.もとの$2$次関数は$y=-x^2-[ ]x+[ ]$である.
(4)赤玉が$5$個,青玉が$4$個入っている袋から$3$個を取り出すとき,少なくとも$1$個が青玉である確率は$\displaystyle \frac{[ ]}{[ ]}$である.
(5)$\triangle \mathrm{ABC}$において,それぞれの辺の長さを$a=3$,$b=\sqrt{7}$,$c=2$とするとき,$\mathrm{A}$から辺$\mathrm{BC}$に下ろした垂線$\mathrm{AH}$の長さは$\sqrt{[ ]}$である.
(6)$3$点$\mathrm{A}(2,\ 0,\ 0)$,$\mathrm{B}(0,\ 2,\ 0)$,$\mathrm{C}(0,\ 0,\ 3)$が定める平面に原点$\mathrm{O}$から垂線$\mathrm{OH}$を下ろす.$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$で表すと
\[ \overrightarrow{\mathrm{OH}}=\frac{[ ]}{[ ]} \overrightarrow{\mathrm{OA}}+\frac{[ ]}{[ ]} \overrightarrow{\mathrm{OB}}+\frac{[ ]}{[ ]} \overrightarrow{\mathrm{OC}} \]
である.
スポンサーリンク

「空欄補充」とは・・・

 まだこのタグの説明は執筆されていません。