タグ「空欄補充」の検索結果

130ページ目:全1740問中1291問~1300問を表示)
関西大学 私立 関西大学 2012年 第4問
次の$[ ]$をうめよ.

(1)$\displaystyle \lim_{x \to -\infty}(\sqrt{x^2+3x}+x)$の値は$[$①$]$である.
(2)$\displaystyle \sum_{k=1}^n k \comb{n}{k}$を計算すると$[$②$]$となる.
(3)座標空間の原点を$\mathrm{O}$とし,$t$を実数とする.どのような$t$の値に対しても,点$\displaystyle \mathrm{P} \left( \cos t,\ \frac{-1+\sin t}{\sqrt{2}},\ \frac{1+\sin t}{\sqrt{2}} \right)$は原点を中心とする半径$[$③$]$の球面上にある.また,実数$s$に対して,点$\mathrm{Q}(0,\ s,\ -s)$とするとき,$\overrightarrow{\mathrm{OQ}} \cdot \overrightarrow{\mathrm{QP}}=0$となるような$s$の値は$s=0$と$s=[$④$]$である.
(4)媒介変数表示
\[ x=3^{t+1}+3^{-t+1}+1,\quad y=3^t-3^{-t} \]
で表される図形は,$x,\ y$についての方程式$[$⑤$]=1$で定まる双曲線$C$の$x>0$の部分である.また,$C$の漸近線で傾きが正の漸近線の方程式は$y=[$⑥$]$である.
(5)$\theta$の関数$\displaystyle \sin \theta \sin \left( \theta+\frac{\pi}{3} \right) \sin \left( \theta-\frac{\pi}{3} \right)$は,定数$a,\ b$を用いて$a \sin^3 \theta+b \sin \theta$と表すことができる.$a,\ b$の組$(a,\ b)$は$[$④chi$]$である.
(6)無限級数の和として定義される関数
\[ f(x)=x^2+\frac{x^2}{1+2x^2}+\frac{x^2}{(1+2x^2)^2}+\cdots +\frac{x^2}{(1+2x^2)^n}+\cdots \]
について,$\displaystyle \lim_{x \to 0}f(x)$の値は$[$\maruhachi$]$である.
愛知学院大学 私立 愛知学院大学 2012年 第1問
次の問いに答えよ.

(1)式$(2x+1)^4$を展開したとき,$x$の項の係数は$[ア]$である.
(2)式$(2x+1)^4$を展開したとき,$x^2$の項の係数は$[イ]$である.
(3)式$(2x+1)^{10}$を展開したとき,$x^3$の項の係数は$[ウ]$である.
(4)式$(3x^3+2)^6$を展開したとき,$x^9$の項の係数は$[エ]$である.
福岡大学 私立 福岡大学 2012年 第1問
$2$つの直線$\displaystyle y=-\frac{1}{3}x+1$と$y=0$とのなす角を$\theta_1$とすると,$\cos \theta_1=[ ]$である.また,$2$つの直線$\displaystyle y=-\frac{1}{3}x+1$と$\displaystyle y=\frac{1}{2}x+1$とのなす角を$\theta_2$とすると,$\cos \theta_2=[ ]$である.
福岡大学 私立 福岡大学 2012年 第2問
$\displaystyle \frac{\sqrt{6}+2}{\sqrt{6}-2}$の整数部分の値は$[ ]$である.また,等式$|x|+|x-3|=x+1$をみたす$x$の値をすべて求めると,$x=[ ]$である.
福岡大学 私立 福岡大学 2012年 第3問
曲線$y=x^2-1$上を動く点$\mathrm{P}$と,直線$y=x-3$上を動く点$\mathrm{Q}$との距離が最小となるときの点$\mathrm{Q}$の座標は$[ ]$であり,このときの距離は$[ ]$である.
福岡大学 私立 福岡大学 2012年 第4問
$0<k<2$とする.曲線$C:y=x^2$上を動く点$\mathrm{P}$と,直線$y=2k(x-1)$上を動く点$\mathrm{Q}$との距離が最小となるとき,点$\mathrm{P}$の座標を$k$の式で表すと$[ ]$である.このときの直線$\mathrm{PQ}$と曲線$C$とで囲まれる部分の面積が最小になる$k$の値を求めると,$k=[ ]$である.
福岡大学 私立 福岡大学 2012年 第5問
一辺の長さが$1$の正三角形$\mathrm{OAB}$がある.辺$\mathrm{AB}$の中点を$\mathrm{M}$とする.辺$\mathrm{OA}$上に点$\mathrm{P}$をとり,線分$\mathrm{OM}$と線分$\mathrm{BP}$との交点を$\mathrm{Q}$とする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$k=|\overrightarrow{\mathrm{OP}}|$とおく.$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$k$で表すと,$\overrightarrow{\mathrm{OQ}}=[ ]$である.また,$|\overrightarrow{\mathrm{OP}}|=|\overrightarrow{\mathrm{OQ}}|$となるとき,$k$の値は$[ ]$である.
北海道薬科大学 私立 北海道薬科大学 2012年 第1問
次の各設問に答えよ.

(1)放物線$y=ax^2+bx-11$が頂点$(2,\ -3)$をもつとすると,$a=[アイ]$,$b=[ウ]$である.
(2)$\displaystyle \frac{1}{x(x+1)}+\frac{1}{(x+1)(x+2)}+\frac{1}{(x+2)(x+3)}=\frac{1}{18}$を満たす$x$の値は$[エオ]$,$[カ]$である.
(3)$\log_{\frac{1}{3}} \sqrt{27}+\log_{27}9 \sqrt{3}$を計算すると,$\displaystyle \frac{[キク]}{[ケ]}$である.
(4)$\displaystyle \int_{-3}^1 |(x+1)(x-3)| \, dx$の値は$[コサ]$である.
広島修道大学 私立 広島修道大学 2012年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)不等式$x^2-x-6<0$の解は$[$1$]$であり,不等式$x^2-|x|-6<0$の解は$[$2$]$である.
(2)放物線$y=-x^2+4x$の頂点の座標は$[$3$]$である.また,この放物線を$x$軸方向に$[$4$]$,$y$軸方向に$[$5$]$だけ平行移動した放物線の方程式は$y=-x^2-2x-3$である.
(3)$x$についての不等式$\log_{\alpha}(3-x)-\log_{\alpha}(2x-3) \leqq 2$の解は,$\displaystyle \alpha=\frac{1}{2}$のとき$[$6$]$であり,$\alpha=2$のとき$[$7$]$である.
(4)$1$個のさいころを$3$回投げるとき,$3$回とも同じ目が出る確率は$[$8$]$である.また,目の和が$7$になる確率は$[$9$]$である.
(5)$(x-2)^{50}=a_0+a_1x+\cdots +a_{50}x^{50}$($a_0,\ a_1,\ \cdots,\ a_{50}$は実数)のとき,$a_{47}$の値は$[$10$]$であり,$a_0+a_1+\cdots +a_{50}$の値は$[$11$]$である.
福岡大学 私立 福岡大学 2012年 第6問
$0<k<3$のとき,等式$|x-k|+|x-3|=x+1$をみたす$2$つの解を$\alpha,\ \beta (\alpha<\beta)$とする.このとき$\beta$を$k$の式で表すと$\beta=[ ]$である.また,$\beta-\alpha=5$となる$k$の値を求めると,$k=[ ]$である.
スポンサーリンク

「空欄補充」とは・・・

 まだこのタグの説明は執筆されていません。