タグ「空欄補充」の検索結果

127ページ目:全1740問中1261問~1270問を表示)
関西大学 私立 関西大学 2012年 第2問
次の$[ ]$を数値でうめよ.

数列$\{a_n\}$の初項から第$n$項までの和を$S_n$と表すとき,すべての自然数$n$について
\[ 3S_n=a_n+7 \cdot 3^n-6 \]
が成立するとする.このとき,$a_1=[$①$]$であり,すべての自然数$n$について
\[ a_{n+1}=[$②$]a_n+[$③$] \cdot 3^n \]
が成立する.いま,$\displaystyle b_n=\frac{a_n}{3^n}$とおくと,
\[ b_n=[$④$] \cdot ([$⑤$])^{n-1}+[$⑥$] \]
と表される.したがって,$a_n$が得られる.
東京理科大学 私立 東京理科大学 2012年 第1問
次の文章中の$[ア]$から$[ヒ]$までに当てはまる数字$0$~$9$を求めよ.ただし,分数は既約分数として表しなさい.

(1)$a$を実数とするとき,方程式
\[ |x|-|x^2-4|+|x+6|=a \]
を考える.この方程式の実数解が$2$個であるための条件は
\[ a<[ア],\quad [イ]<a<[ウ][エ] \]
であり,実数解を持たないための条件は
\[ a>[オ][カ] \]
である.また,次の不等式
\[ |x|-|x^2-4|+|x+6|>2 \]
には,正の整数解が$[キ]$個,負の整数解が$[ク]$個ある.
(2)空間内に点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$があり,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおくとき,それぞれの大きさと内積が
\[ \begin{array}{l}
|\overrightarrow{a}|=9,\quad |\overrightarrow{b}|=12,\quad |\overrightarrow{c}|=\sqrt{42}, \\ \\
\overrightarrow{a} \cdot \overrightarrow{b}=72,\quad \overrightarrow{a} \cdot \overrightarrow{c}=57,\quad \overrightarrow{b} \cdot \overrightarrow{c}=48
\end{array} \]
であるとする.$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$のなす角は$\displaystyle \frac{1}{[ケ]} \pi$であり,$\triangle \mathrm{ABC}$の面積は$\displaystyle \frac{[コ][サ]}{[シ]}$である.ベクトル
\[ \overrightarrow{\mathrm{OA}}+s \overrightarrow{\mathrm{AB}}+t \overrightarrow{\mathrm{AC}} \]
が$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面と直交するのは$\displaystyle s=\frac{[ス]}{[セ]}$,$\displaystyle t=\frac{[ソ]}{[タ]}$のときである.したがって,四面体$\mathrm{OABC}$の体積は$[チ][ツ]$である.
(3)三角関数についての等式
\[ [テ] \cos^3 \theta-[ト] \cos \theta-\cos 3\theta=0 \]
を利用して,$t$に関する$3$次方程式
\[ [テ]t^3-[ト]t-\frac{\sqrt{2}}{2}=0 \]
を解いたとき,$\displaystyle \cos \frac{3}{4} \pi$が解の$1$つであることがわかる.したがって,この方程式の残りの$2$つの解は
\[ \cos \frac{[ナ]}{12} \pi=\frac{\sqrt{[ニ]}+\sqrt{[ヌ]}}{[ネ]} \]

\[ \cos \frac{[ノ]}{12} \pi=\frac{\sqrt{[ニ]}-\sqrt{[ヌ]}}{[ネ]} \]
となる.これより,
\[ \tan \frac{[ナ]}{12} \pi=[ハ]-\sqrt{[ヒ]} \]
となる.
慶應義塾大学 私立 慶應義塾大学 2012年 第1問
以下の文章の空欄に適切な数,式または行列を入れて文章を完成させなさい.ただし$(2)$において,適切な行列が複数個ある場合は,それらをすべて記入しなさい.

(1)$a_1=1$,$a_2=4$,$a_{n+2}=-a_{n+1}+2a_n (n=1,\ 2,\ 3,\ \cdots)$によって定められる数列$\{a_n\}$の一般項は$a_n=[あ]$である.
(2)行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$の表す$1$次変換により点$\mathrm{B}(1,\ 1)$と点$\mathrm{C}(1,\ 0)$はそれぞれ点$\mathrm{B}^\prime$と点$\mathrm{C}^\prime$に移されるとする.また$\mathrm{O}(0,\ 0)$を原点とする.$\overrightarrow{\mathrm{OB}^\prime}=2 \overrightarrow{\mathrm{OB}}$,かつ$\triangle \mathrm{OB}^\prime \mathrm{C}^\prime$が正三角形となるような行列$A$をすべて求めると$A=[い]$である.
(3)媒介変数$t$を用いて
\[ \left\{ \begin{array}{l}
x=\displaystyle \frac{e^t+3e^{-t}}{2} \\ \\
y=e^t-2e^{-t}
\end{array} \right. \]
と表される曲線$C$の方程式は
\[ [う]x^2+[え]xy+[お]y^2=25 \]
である.
また曲線$C$の接線の傾きは,$t=[か]$に対応する点において$-2$となる.
(4)$\alpha>1$を実数とする.$0 \leqq x \leqq 1$を定義域とする関数$f(x)=x-x^\alpha$が最大値をとる点を$x(\alpha)$とすると$x(\alpha)=[き]$である.また$\displaystyle \lim_{\alpha \to 1+0} x(\alpha)=[く]$である.
慶應義塾大学 私立 慶應義塾大学 2012年 第2問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

$xy$平面上で点$\mathrm{P}$は$x$軸上に,点$\mathrm{Q}$は$y$軸上に置かれ,点$\mathrm{P}$の$x$座標と点$\mathrm{Q}$の$y$座標はそれぞれ$-2$以上$2$以下の整数であるとする.点$\mathrm{P}$,$\mathrm{Q}$に対して次の操作を考える.
\begin{screen}
{\bf 操作} \\
点$\mathrm{P}$の座標が$(i,\ 0)$,点$\mathrm{Q}$の座標が$(0,\ j)$であるとき次の規則に従って$2$点$\mathrm{P}$,$\mathrm{Q}$を互いに独立に同時に処理する.

\mon[$(\mathrm{P}1)$] $-1 \leqq i \leqq 1$ならば点$\mathrm{P}$を$(i+1,\ 0)$または$(i-1,\ 0)$のどちらかに確率$\displaystyle \frac{1}{2}$ずつで移す.
\mon[$(\mathrm{P}2)$] $i=-2$ならば点$\mathrm{P}$を必ず$(-1,\ 0)$に移す.
\mon[$(\mathrm{P}3)$] $i=2$ならば点$\mathrm{P}$をそのままにしておく.
\mon[$(\mathrm{Q}1)$] $-1 \leqq j \leqq 1$ならば点$\mathrm{Q}$を$(0,\ j+1)$または$(0,\ j-1)$のどちらかに確率$\displaystyle \frac{1}{2}$ずつで移す.
\mon[$(\mathrm{Q}2)$] $j=-2$ならば点$\mathrm{Q}$を必ず$(0,\ -1)$に移す.
\mon[$(\mathrm{Q}3)$] $j=2$ならば点$\mathrm{Q}$をそのままにしておく.

\end{screen}
さて,$2$点$\mathrm{P}$,$\mathrm{Q}$がともに$(0,\ 0)$に置かれている状態から始め,上の操作を$3$回繰り返し行う.

(1)$3$回の操作の後,点$\mathrm{P}$が$(1,\ 0)$に置かれている確率は$[あ]$であり,$(-1,\ 0)$に置かれている確率は$[い]$である.
(2)$xy$平面上で不等式$y>x$の表す領域を$A$,不等式$y>-x$の表す領域を$B$とする.各回の操作後に点$\mathrm{P}$が常に$A \cup B$内に置かれているという事象を$U$とし,各回の操作後に点$\mathrm{Q}$が常に$A \cup B$内に置かれているという事象を$V$とすると,事象$U \cup V$の確率は$[う]$である.
$xy$平面上で$2$点$\mathrm{P}$,$\mathrm{Q}$を結ぶ線分の長さを$\mathrm{PQ}$とする.ただし$2$点$\mathrm{P}$,$\mathrm{Q}$がともに$(0,\ 0)$に置かれている場合は$\mathrm{PQ}=0$とする.
(3)$3$回の操作を通じてちょうど$1$回だけ$\mathrm{PQ}=\sqrt{2}$となる確率は$[え]$である.
(4)$3$回の操作を通じた$\mathrm{PQ}$の最大値の期待値は$[お]$である.
関西大学 私立 関西大学 2012年 第2問
次の$[ ]$をうめよ.

(1)$y=|\abs{x-2|+2x-3}$のとき,$y$を絶対値を用いずに$x$で表すと
\[ \begin{array}{cll}
x \leqq [$①$] & \text{のとき} & y=[$②$] \\
[$①$]<x \leqq [$③$] & \text{のとき} & y=[$④$] \\
[$③$]<x & \text{のとき} & y=[$⑤$]
\end{array} \]
となる.
(2)$y=|\abs{x-2|+2x-3}$のグラフと直線$y=4$とは$x=[$⑥$]$および$x=[$④chi$]$(ただし,$[$⑥$]<[$④chi$]$とする)で交わる.また,$y=|\abs{x-2|+2x-3}$のグラフと直線$y=4$とで囲まれた図形の面積は$[$\maruhachi$]$である.
慶應義塾大学 私立 慶應義塾大学 2012年 第3問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.ただし$(2)$において,適切な$t$の値が複数個ある場合は,それらをすべて記入しなさい.

放物線$y=x^2$を$C$とする.$C$上に点$\mathrm{P}(-1,\ 1)$をとり,$\mathrm{P}$における$C$の法線と$C$との交点のうち,$\mathrm{P}$と異なるものを$\mathrm{Q}$とする.また$t$を実数として,点$\mathrm{P}$をとおって傾きが$t$の直線を$\ell_1$とし,点$\mathrm{Q}$をとおって$\ell_1$と直交する直線を$\ell_2$とする.$\ell_1$と$\ell_2$の交点を$\mathrm{R}$とする.

(1)点$\mathrm{Q}$の座標は$([あ],\ [い])$である.
(2)点$\mathrm{R}$が点$\mathrm{P}$,$\mathrm{Q}$と異なるように$t$を変化させるときの$\triangle \mathrm{PQR}$の面積の最大値は$[う]$である.また$\triangle \mathrm{PQR}$の面積を最大にする$t$の値をすべて求めると$t=[え]$である.
(3)点$\mathrm{P}$,$\mathrm{Q}$とは異なる$C$上の点$\mathrm{T}(u,\ u^2)$を考える.$\overrightarrow{\mathrm{TP}} \cdot \overrightarrow{\mathrm{TQ}}<0$となるような$u$の範囲は
\[ [お]<u<[か] \]
である.
(4)点$\mathrm{R}$が,不等式$y<x^2$の表す領域に入るような$t$の範囲は
\[ [き]<t<[く] \]
である.
慶應義塾大学 私立 慶應義塾大学 2012年 第4問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

(1)$\displaystyle 0 \leqq \alpha<\beta \leqq \frac{\pi}{2}$かつ$R>0$とする.極座標$(r,\ \theta)$に関する条件
\[ 0 \leqq r \leqq R,\quad \alpha \leqq \theta \leqq \beta \]
により定まる図形を$x$軸のまわりに回転させて得られる立体の体積を$T$とする.$T$を$\alpha,\ \beta,\ R$を用いた式で表すと
\[ T=[あ] \]
である.
(2)極方程式$r=f(\theta) (0 \leqq \theta \leqq \alpha)$で表される曲線$C$と,$\theta=\alpha$で表される直線$\ell$および$x$軸の正の部分で囲まれた図形を$S$とする.ただし$\displaystyle 0<\alpha<\frac{\pi}{2}$とし,関数$f(\theta)$は連続かつ$f(\theta)>0$をみたし,$0 \leqq \theta \leqq \alpha$において増加または減少または定数とする.
$S$を$x$軸のまわりに回転させて得られる立体の体積を$V(\alpha)$とすると
\[ \frac{d}{d\alpha}V(\alpha)=[い] \]
であり,したがって
\[ V(\alpha)=[う] \]
である.また$S$を直線$\ell$のまわりに回転させて得られる立体の体積を$W(\alpha)$とすると
\[ W(\alpha)=[え] \]
である.
(3)$(2)$において$f(\theta)=\sqrt[3]{\cos \theta}$とするとき$\displaystyle V \left( \frac{\pi}{4} \right)$,$\displaystyle W \left( \frac{\pi}{4} \right)$の値を求めると
\[ V \left( \frac{\pi}{4} \right)=[お],\quad W \left( \frac{\pi}{4} \right)=[か] \]
である.
北海道医療大学 私立 北海道医療大学 2012年 第2問
以下の問に答えよ.
\[ \left\{ \begin{array}{ll}
a_1=1,\ b_1=2 & \\
a_{n+1}=a_n+2b_n & (n=1,\ 2,\ \cdots) \phantom{\displaystyle\frac{[ ]}{[ ]}} \\
b_{n+1}=2a_n+b_n & (n=1,\ 2,\ \cdots)
\end{array} \right. \]

(1)$a_3$および$b_3$を求めよ.
(2)数列$\{a_n+b_n\}$および$\{a_n-b_n\}$の一般項を求めよ.
(3)数列$\{a_n\}$および$\{b_n\}$の一般項を求めよ.
(4)数列$\{a_n\}$および$\{b_n\}$の第$n$項までの和$\displaystyle \sum_{i=1}^n a_i$および$\displaystyle \sum_{i=1}^n b_i$を求めよ.
東京理科大学 私立 東京理科大学 2012年 第1問
以下の問いに答えよ.

(1)$a_1=1$,$\displaystyle a_{n+1}=4a_n+\left( \frac{1}{3} \right)^n (n=1,\ 2,\ 3,\ \cdots)$で定められた数列$\{a_n\}$を考える.$\alpha$を定数として
\[ b_n=a_n+\alpha \left( \frac{1}{3} \right)^n \quad (n=1,\ 2,\ 3,\ \cdots) \]
とおくと$\displaystyle \alpha=\frac{[ア]}{[イ][ウ]}$のとき,$\{b_n\}$は初項$\displaystyle \frac{[エ][オ]}{[カ][キ]}$,公比$[ク]$である等比数列となる.これより
\[ a_n=\frac{[ケ]}{[コ][サ]} \left( [シ]^n-\left( \frac{[ス]}{[セ]} \right)^n \right) \quad (n=1,\ 2,\ 3,\ \cdots) \]
である.
(2)$a_1=1$である数列$\{a_n\}$が$5^{n+1}a_{n+1}+24a_{n+1}a_n-5^na_n=0 (n=1,\ 2,\ 3,\ \cdots)$を満たしているとき
\[ a_n=\frac{[ソ]^{n-1}}{[タ] \cdot [チ][ツ]^{n-1}-1} \quad (n=1,\ 2,\ 3,\ \cdots) \]
である.
東京理科大学 私立 東京理科大学 2012年 第2問
$\displaystyle a=\frac{1}{1+\sqrt{3}+\sqrt{5}}$,$\displaystyle b=\frac{1}{1-\sqrt{3}+\sqrt{5}}$,$\displaystyle c=\frac{1}{1+\sqrt{3}-\sqrt{5}}$,$\displaystyle d=\frac{1}{1-\sqrt{3}-\sqrt{5}}$とおく.

(1)$\displaystyle abcd=-\frac{1}{[ア][イ]}$である.
(2)$abc,\ abd,\ acd,\ bcd$の最小値は
\[ \frac{-[ウ]-[エ] \sqrt{3}-[オ] \sqrt{5}-[カ] \sqrt{15}}{[ア][イ]} \]
である.
(3)$ab+cd,\ ac+bd,\ ad+bc$の最小値は
\[ -\frac{[キ]}{[ア][イ]} \]
である.
(4)$a+b,\ a+c,\ a+d,\ b+c,\ b+d,\ c+d$の最小値は
\[ \frac{[ク][ケ]-[コ] \sqrt{3}-[サ] \sqrt{5}-[シ] \sqrt{15}}{[ア][イ]} \]
である.
(5)$(x-a)(x-b)(x-c)(x-d)$
\[ =\frac{[ア][イ]x^4-[ス][セ]x^3+[ソ][タ]x^2+[チ]x-1}{[ア][イ]} \]
である.
スポンサーリンク

「空欄補充」とは・・・

 まだこのタグの説明は執筆されていません。