タグ「空欄補充」の検索結果

123ページ目:全1740問中1221問~1230問を表示)
東京理科大学 私立 東京理科大学 2012年 第3問
$3$次方程式$x^3-6x^2+ax+a=0$が異なる$3$つの実数解$u,\ v,\ w$をもち,
\[ (u-1)^3+(v-2)^3+(w-3)^2=0 \]
が成り立っているとする.ただし$a$は実数とする.このとき$u,\ v,\ w$の間に成り立つ関係式と$a$の値は次の$3$通りである.

(1)$\displaystyle w=[ノ],\ u+v=[ハ],\ a=\frac{[ヒフ]}{[ヘ]}$

(2)$\displaystyle v=[ホ],\ u+w=[マ],\ a=\frac{[ミム]}{[メ]}$

(3)$\displaystyle u=[モ],\ v+w=[ヤ],\ a=\frac{[ユ]}{[ヨ]}$

ただし,必要ならば,一般に$3$次方程式$ax^3+bx^2+cx+d=0$の$3$つの解を$\alpha$,$\beta$,$\gamma$とすると,
\[ \alpha+\beta+\gamma=-\frac{b}{a},\quad \alpha\beta+\beta\gamma+\gamma\alpha=\frac{c}{a},\quad \alpha\beta\gamma=-\frac{d}{a} \]
が成り立つことを用いてもよい.
東京理科大学 私立 東京理科大学 2012年 第4問
$\mathrm{O}$を原点とする座標空間の$4$点$\mathrm{A}(2,\ 0,\ 0)$,$\mathrm{B}(0,\ 2,\ 0)$,$\mathrm{C}(1,\ 1,\ 2)$,$\mathrm{D}(1,\ 1,\ -2)$について,次の各問いに答えよ.また,$0<m<1$とする.

(1)$\mathrm{AB}$を$m:(1-m)$に内分する点を$\mathrm{P}_m$とし,$\mathrm{OP}_m$を$m:1$に内分する点を$\mathrm{Q}_m$とする.このとき,$\mathrm{Q}_{\frac{1}{5}}$の座標は,$\displaystyle \left( \frac{[ラ]}{[リ][ル]},\ \frac{[レ]}{[ロ][ワ]},\ [ヲ] \right)$である.

(2)$\mathrm{OC}$を$m:1$に内分する点を$\mathrm{R}_m$,$\mathrm{AD}$の中点を$\mathrm{M}$とし,$\mathrm{R}_m \mathrm{M}$を$m:(1-m)$に内分する点を$\mathrm{S}_m$とすると,$\mathrm{S}_{\frac{1}{2}}$の座標は,$\displaystyle \left( \frac{[ン][あ]}{[い][う]},\ \frac{[え]}{[お][か]},\ \frac{[き]}{[く]} \right)$である.
(3)$\overrightarrow{\mathrm{CQ}_m}$と$\overrightarrow{\mathrm{OA}}$について,
\[ \overrightarrow{\mathrm{CQ}_m} \cdot \overrightarrow{\mathrm{OA}}=\frac{1}{m+1}(-[け]m^2+[こ]m-[さ]) \]
である.したがって,この$2$つのベクトルは垂直にはなりえない.
(4)$\overrightarrow{\mathrm{CQ}_m}$と$\overrightarrow{\mathrm{AB}}$が垂直となるような$m$の値は,$\displaystyle m=\frac{[し]}{[す]}$である.

(5)$\displaystyle \frac{m+1}{m} \times \mathrm{Q}_m \mathrm{S}_m$が最小となるのは$\displaystyle m=\frac{[せ][そ]}{[た][ち]}$のときであり,その最小値は$\displaystyle \sqrt{\frac{[つ][て]}{[と][な]}}$である.
慶應義塾大学 私立 慶應義塾大学 2012年 第1問
次の$[ ]$にあてはまる最も適当な数を記入せよ.

(1)$20^{10}$の正の約数は全部で$[ア]$個ある.
(2)$2<\log_a 900<6$を満たすような$2$以上の自然数$a$は全部で$[イ]$個ある.
(3)整数の組$(p,\ q)$のうち,$2$次方程式$x^2-2px+13=0$の解の$1$つが$p+qi$であるような組$(p,\ q)$は全部で$[ウ]$個ある.ただし,$i$は虚数単位とする.
(4)$100$以下の自然数$m$のうち,$2$次方程式$x^2-x-m=0$の$2$つの解がともに整数であるような$m$は全部で$[エ]$個ある.
(5)$3$次方程式$x^3-3x^2-9x-k=0$が異なる$3$つの実数解をもつような整数$k$は全部で$[オ]$個ある.
慶應義塾大学 私立 慶應義塾大学 2012年 第2問
次の$[ ]$にあてはまる最も適当な数または式を記入しなさい.

(1)多項式$P(x)$を$x^3+1$で割ったときの余りが$2x^2+13x$であった.このとき,$P(x)$を$x+1$で割ったときの余りは$[カ]$である.また,$P(x)$を$x^2-x+1$で割ったときの余りは$[キ]$である.
(2)数列$\{a_n\}$の初項から第$n$項までの和$S_n$が,
\[ S_n=n^3+2012 \]
で与えられるとする.この数列$\{a_n\}$の初項$a_1$は$a_1=[ク]$である.また,$2$以上の自然数$n$に対して,$a_n$を$n$を用いて表すと$a_n=[ケ]$となる.
(3)$a>1$とし,三角形$\mathrm{ABC}$で$\mathrm{AB}=2$,$\mathrm{BC}=a$,$\angle \mathrm{A}=30^\circ$であるようなものについて考える.このとき$k=[コ]$として,$1<a<k$の場合はこのような三角形は$2$つ存在するが,$a \geqq k$の場合はこのような三角形は$1$つしか存在しない.また$a \geqq k$の場合,$\mathrm{AC}$の長さを$a$を用いて表すと$\mathrm{AC}=[サ]$となる.
(4)$3$個のさいころを同時に投げるとき,出る目の数の積が$3$の倍数になる確率は$[シ]$であり,出る目の数の積が$15$の倍数になる確率は$[ス]$である.
(5)実数$x,\ y$が$2$つの不等式
\[ x^2+y^2 \leqq 25,\quad x-2y \geqq 5 \]
を同時に満たすとき,$y-2x$の最大値は$[セ]$であり,最小値は$[ソ]$である.
西南学院大学 私立 西南学院大学 2012年 第1問
半径$R$の円に,四角形$\mathrm{ABCD}$が内接している.$\mathrm{AB}=\mathrm{BC}=\sqrt{19}$,$\mathrm{AD}=2$,$\mathrm{CD}=3$のとき,$\mathrm{AC}=\sqrt{[アイ]}$,$\displaystyle R=\frac{\sqrt{[ウエ]}}{[オ]}$,$\mathrm{BD}=[カ]$である.
西南学院大学 私立 西南学院大学 2012年 第2問
実数$a$に対して,集合$A,\ B,\ C$および全体集合$U$が次のように定義されている.
\[ \begin{array}{l}
A=\{2,\ -a+5,\ a^2-2a+1,\ a^2+a-6 \} \\
B=\{4,\ a^2-6a+8,\ a^2-6a+9 \} \\
C=\{a^2-a-2,\ a^3-8a^2+19a-12 \} \\
U=A \cup B \cup C
\end{array} \]
いま$A \cap B \cap C=\{0\}$のとき,以下の問に答えよ.

(1)$a=[キ]$である.
(2)$A \cap B=\{ 0,\ [ク] \}$である.
(3)$(\overline{A} \cup \overline{B}) \cap (A \cup C)=\{ [ケ],\ [コ] \}$である.ただし,$[ケ]<[コ]$とする.
南山大学 私立 南山大学 2012年 第1問
$[ ]$の中に答を入れよ.

(1)関数$f(\theta)=\sin^2 \theta-\sqrt{3} \cos \theta+2 (0 \leqq \theta \leqq \pi)$は,$\theta=[ア]$で最大値$[イ]$をとる.
(2)実数$x,\ y$が$2x+3y+1=0$を満たすとき,$4^x+8^y$は$x=[ウ]$で最小値$[エ]$をとる.
(3)実数$a$に対して,$3$次方程式$9x^3-3x^2+ax-1=0$の$1$つの解が$\displaystyle \frac{1}{3}$のとき,$a=[オ]$である.また,この方程式の$\displaystyle \frac{1}{3}$以外の解を$\alpha,\ \beta$とするとき,$\displaystyle \alpha^{18}+\beta^{18}=\frac{[カ]}{3^9}$である.
(4)平面上に,原点$\mathrm{O}$を中心とする半径$1$の円$C$と,点$(3,\ 0)$を通る傾き$m$の直線$\ell$がある.$\ell$と$C$が異なる$2$点$\mathrm{A}$,$\mathrm{B}$で交わるとき,$m$の範囲は$[キ]$である.また,線分$\mathrm{AB}$の長さが$\displaystyle \frac{\sqrt{10}}{5}$のとき,$m=[ク]$である.
(5)$a$を$0$でない実数とする.関数$f(x)=a(x^3-3x^2+a)$の極小値が$1$であり,極大値が$7$より大きいとき,$a=[ケ]$で,その極大値は$[コ]$である.
南山大学 私立 南山大学 2012年 第1問
$[ ]$の中に答を入れよ.

(1)$\triangle \mathrm{ABC}$において,$\mathrm{AC}=10$,$\mathrm{BC}=6$,$\displaystyle \cos A=\frac{4}{5}$とし,辺$\mathrm{AC}$の中点を$\mathrm{M}$とする.このとき,$\tan A=[ア]$であり,$\triangle \mathrm{BCM}$の外接円の半径は$[イ]$である.
(2)関数$f(x)=|x-1|-|x+2|+|x-3|$が,$f(a)=0$を満たすとき,$a=[ウ]$である.また,$y=f(x)$のグラフと$x$軸で囲まれた図形の面積は$[エ]$である.
(3)$k$を正の実数とする.$3$次関数$f(x)=kx^3+3kx^2-9kx+3$の極大値は$[オ]$である.また,$f(x)=0$が正の実数解を持つような$k$の値の範囲は$[カ]$である.
(4)円$C:x^2+(y-2)^2=1$と点$\mathrm{A}(2,\ 0)$がある.この$C$上の点$\mathrm{P}$と$\mathrm{A}$を結ぶ線分$\mathrm{PA}$の中点を$\mathrm{Q}$とするとき,$\mathrm{Q}$の軌跡の方程式は$[キ]$である.また,$\mathrm{Q}$の軌跡と$C$が交わる点の$x$座標は$[ク]$である.
(5)$a>1$に対して最小値が$2$である関数$f(x)=\log_a (x^2-2x+3)$と,関数$g(x)=\log_2 (2x-1)^2$がある.このとき,$a=[ケ]$であり,$f(x)=g(x)$を満たす$x$の値は$[コ]$である.
南山大学 私立 南山大学 2012年 第1問
$[ ]$の中に答を入れよ.

(1)$3$次の整式$F(x)$を$x^2-3x+2$で割ると,余りは$-3x-5$である.これより,$F(2)=[ア]$である.この$F(x)$を$x^2+3x+2$で割った余りが$3x+7$であるとき,$F(0)=[イ]$である.
(2)関数$\displaystyle f(x)=\frac{9 \cdot 10^x}{(1+10^x)^2}$を考える.$f(x) \geqq 2$となる$x$の値の範囲は$[ウ]$である.また,等式$\displaystyle f(-x)=\frac{a \cdot 10^{bx}}{(1+10^x)^2}$がすべての$x$について成り立つように定数$a,\ b$の値を定めると$(a,\ b)=[エ]$である.
(3)直線$\ell:y=7x+6a-5$と放物線$y=(x-a)^2-5$が異なる$2$点で交わるとき,定数$a$のとりうる値の範囲を求めると$[オ]$である.また,直線$y=2x+a$に関して,$\ell$と対称な直線の方程式を求めると$[カ]$である.
(4)$\displaystyle 0<\theta<\frac{\pi}{2}$とする.$\displaystyle \frac{1}{\sin \theta}+\frac{1}{\cos \theta}=4 \sqrt{3}$のとき,$\sin \theta \cos \theta$の値を求めると$\sin \theta \cos \theta=[キ]$であり,$\sin^4 \theta+\cos^4 \theta$の値を求めると$\sin^4 \theta+\cos^4 \theta=[ク]$である.
南山大学 私立 南山大学 2012年 第1問
$[ ]$の中に答を入れよ.

(1)$3$つの行列$A=\left( \begin{array}{cc}
5 & 3 \\
2 & 1
\end{array} \right)$,$B=\left( \begin{array}{rr}
1 & -3 \\
-2 & 5
\end{array} \right)$,$C=\left( \begin{array}{rr}
2 & -3 \\
-4 & 5
\end{array} \right)$がある.$A$の逆行列$A^{-1}$を求めると,$A^{-1}=[ア]$である.$B^2A^3CA$を求めると,$B^2A^3CA=[イ]$である.
(2)$k>1$とする.$2$次方程式$kx^2+(1-2k)x-2=0$の$2$つの解を$\alpha,\ \beta$とする.$2$次方程式$x^2-2(k+1)x+4k=0$の解の$1$つは$\beta$であり,もう$1$つの解を$\gamma$とする.このとき,$\beta$を求めると$\beta=[ウ]$である.さらに,$\beta-\alpha=\gamma-\beta$が成り立つとき,$k$の値を求めると$k=[エ]$である.
(3)$y=e^x+e^{-x}$とする.$y=3$のとき,$\displaystyle e^{\frac{x}{2}}+e^{-\frac{x}{2}}$の値は$\displaystyle e^{\frac{x}{2}}+e^{-\frac{x}{2}}=[オ]$である.また,$y=4$のとき,$x=[カ]$である.
(4)原点$\mathrm{O}$からの距離と点$\mathrm{A}(1,\ 1)$からの距離の比が$\sqrt{2}:1$である点$\mathrm{P}(x,\ y)$の軌跡は方程式$[キ]$で与えられる.この図形上の点$\mathrm{Q}(s,\ t)$における接線の傾きが$2$であるとき,$\mathrm{Q}$の座標は$(s,\ t)=[ク]$である.
(5)区別できない$9$個の球を$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$の$4$つの箱のいずれかに入れる.$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$に入れた球の個数をそれぞれ$a,\ b,\ c,\ d$とし,$X=1000a+100b+10c+d$とする.$X$のとりうる値を小さい順に並べたときに$31$番目にくる値を求めると$[ケ]$であり,$X$が$4$桁の数となる球の入れ方は$[コ]$通りある.
スポンサーリンク

「空欄補充」とは・・・

 まだこのタグの説明は執筆されていません。