タグ「空欄補充」の検索結果

116ページ目:全1740問中1151問~1160問を表示)
早稲田大学 私立 早稲田大学 2012年 第2問
次の問に答えよ.

(1)$4$個の数字$2,\ 4,\ 9,\ 12$から重複を許して$4$個選ぶとき,選んだ$4$個の数の平均が$8$になる確率は$[カ]$である.
(2)$\mathrm{A}$,$\mathrm{B}$の$2$人が$1$つのサイコロを$1$回ずつ交互に投げる.$\mathrm{A}$から始めて$\mathrm{A}$,$\mathrm{B}$,$\mathrm{A}$,$\mathrm{B}$の順で$1$人$2$回,$2$人あわせて$4$回投げるものとする.

(3)先に$2$回偶数を出した人を勝ちとするとき,$\mathrm{B}$が勝つ確率は$[キ]$である.
(4)先に$2$回$1$の目を出した人を勝ちとするとき,$\mathrm{B}$が勝つ確率は$[ク]$である.
早稲田大学 私立 早稲田大学 2012年 第3問
次の問いに答えよ.

(1)整数$x,\ y$が$x^2-23y^2=1$を満たすとき,次の問いに答えよ.

(2)$1<x+\sqrt{23}y<49$のとき,$x=[ケ]$,$y=[コ]$である.
(3)$1$より小なる$x+\sqrt{23}y$が最大になるのは$x=[サ]$,$y=[シ]$のときである.

(4)曲線$y=x^2$,$x$軸,および直線$x=1$で囲まれた図形の面積を$S$とする.この図形の面積の近似値を以下の方法を用いて求める.区間$0 \leqq x \leqq 1$を$n$等分し,$i (1 \leqq i \leqq n)$番目の区間$\displaystyle\frac{(i-1)}{n} \leqq x \leqq \frac{i}{n}$を底辺とする高さ$\displaystyle \left( \frac{i-\displaystyle\frac{1}{2}}{n} \right)^2$の長方形を考える.これらの長方形の面積の$i$についての総和を$S_n$とする.

(i) $S_n=[ス]$である.
(ii) $\displaystyle |S-S_n| \leq \frac{1}{30000}$となる$n$の最小値は$[セ]$である.
慶應義塾大学 私立 慶應義塾大学 2012年 第1問
$f(x),\ g(x)$を$x$の整式とする.これらが
\[ f(x) = 2x + \int_0^1 g(t) \, dt \]
\[g(x) = x^2 \int_0^1 f(t) \, dt + 2 \]
を満たすとき,
\[ f(x) = [(1)] x + \frac{[(2)]}{[(3)]} \]
\[ g(x) = \frac{[(4)]}{[(5)]}x^2 +[(6)]x + [(7)] \]
となる.さらに,
\[ \int_{-1}^2 \left\{f(t)+2g(t)\right\}\,dt = \frac{[(8)][(9)][(10)]}{[(11)]} \]
\[ \int_0^2 f(t)g^{\prime}(t) \, dt= [(12)][(13)][(14)] \]
である.
慶應義塾大学 私立 慶應義塾大学 2012年 第1問
次の空欄に当てはまる数字を書け.

(1)$\mathrm{A}$の袋には赤玉$1$個と黒玉$15$個,$\mathrm{B}$の袋には黒玉$16$個が入っている.それぞれの袋から$1$個ずつ玉を取り出して交換する,という試行を$n$回繰り返したとき,赤玉が$\mathrm{A}$の袋に入っている確率を$p_n$とする.ただし,$n$は自然数である.例えば,
\[ p_1 = \frac{[$1$][$2$]}{[$3$][$4$]},\ p_2 = \frac{[$5$][$6$][$7$]}{[$8$][$9$][$10$]} \]
である.$p_{n+1}$を$p_n$で表すと,$p_{n+1}=\displaystyle\frac{[$11$]}{[$12$]}p_n+\displaystyle\frac{[$13$]}{[$14$][$15$]}$となるので,これより
\[ p_n = \frac{[$16$]}{[$17$]}\left\{1+\left(\frac{[$18$]}{[$19$]}\right)^n\right\} \]
と求まる.
(2)赤玉$7$個,白玉$10$個,青玉$n$個が入った袋から,同時に$4$個の玉を取り出すとき,それらが赤玉$1$個,白玉$2$個,青玉$1$個である確率を$q_n$とする.ただし,$n$は自然数である.$\displaystyle\frac{q_{n+1}}{q_n}$を$n$の式で表すと,
\[ \frac{q_{n+1}}{q_n} = \frac{n^2+[$20$][$21$]n+[$22$][$23$]}{n^2+[$24$][$25$]n} \]
となる.これより$n \leq [$26$]$の範囲で$q_n < q_{n+1}$が成り立ち,また,$n \geq [$27$]$の範囲で$q_n > q_{n+1}$が成り立つことがわかる.従って,$q_n$は$n= [$28$]$で最大値$\displaystyle\frac{[$29$][$30$]}{[$31$][$32$][$33$]}$をとる.
慶應義塾大学 私立 慶應義塾大学 2012年 第3問
数列$\{a_n\}$は次の$3$つの条件
\[ \begin{array}{ll}
(\mathrm{A}) & a_1=1 \\
(\mathrm{B}) & a_{n+1}^2 - 6a_{n+1}a_n + 8a_n^2 = 0 \quad (n=1,\ 2,\ 3,\cdots) \\
(\mathrm{C}) & a_{n+1} > 3 a_n \quad (n=1,\ 2.\ 3,\cdots)
\end{array} \]
を満たしている.以下の文は$\{a_n\}$の一般項を推測する記述である. \\
条件$(\mathrm{A})$と,条件$(\mathrm{B})$において$n=[(31)]$とおいた式から,$a_2$は$2$次方程式
\[ x^2 - [(32)]x + [(33)] = 0 \]
の解の$1$つである.この方程式の解のうち小さいほうは[(34)],大きいほうは[(35)]である.これらの候補のうち条件$(\mathrm{C})$において$n=1$とした式を満たすものを選ぶと,$a_2=[(36)]$である.同様に,$a_3=[(37)][(38)],\ a_4=[(39)][(40)]$となるので,一般項は$a_n=[(41)]^{n-1}$と推測される.
慶應義塾大学 私立 慶應義塾大学 2012年 第4問
$t$を実数の定数として,$x$の$3$次関数
\[ f(x) = \frac{1}{3}x^3-2^tx^2+(4^t-4^{-t})x \]
を考える.$f(x)$は$x=\alpha$において極大値を,$x=\beta$において極小値をとるとする.

(1)$\alpha,\ \beta$を$t$のなるべく簡単な式で表せ.
(2)$\alpha,\ \beta$が$\alpha\beta=1$を満たすとき
\[ t= \frac{1}{2} \left\{ \log_2 \left([(a)]+\sqrt{[(b)]}\right)-[(c)] \right\} \]
である.(a),\ (b),\ (c)にあてはまる$1$桁の自然数を求めよ.
(3)$\alpha,\ \beta$が$\beta-\alpha \geqq 12$を満たすときの$t$の値の範囲は
\[ t \leqq - [(d)] \log_2 [(e)] -1 \]
である.(d),\ (e)にあてはまる$1$桁の自然数を求めよ.
慶應義塾大学 私立 慶應義塾大学 2012年 第3問
関数$f(x)=x(x-1)(x-3)(x-4)$は$0 \leq x \leq 4$の範囲において,
$x=[$35$]$で最大値[$36$]をとり,$x=\displaystyle\frac{[$37$]\text{±}\sqrt{[$38$][$39$]}}{[$40$]}$
で最小値$-\displaystyle\frac{[$41$]}{[$42$]}$をとる.
慶應義塾大学 私立 慶應義塾大学 2012年 第4問
曲線上の点$\mathrm{P}$を通り,$\mathrm{P}$におけるこの曲線の接線$\ell$と直交する直線$m$をこの曲線の法線とよぶ.$a,\ b>0$とし,$2$次曲線$x^2 = 4a(y+b)$の法線が$(0,\ 2a)$を通るとき,接点$\mathrm{P}(p,\ q)$は
\[ p^2 = [(41)]ab, \quad q= [(42)] \]
をみたす.したがって条件をみたす接線と法線の組$(\ell,\ m)$は$2$組ある.この$4$本の直線で囲まれる$4$角形$S$の面積は$[(43)][(44)](a+b)\sqrt{ab}$である.また$2$本の法線と$2$次曲線で囲まれる部分で$S$に含まれる部分の面積は
\[ \left( \frac{[(45)][(46)]a+[(47)][(48)]b}{[49]} \right) \sqrt{ab} \]
である.
上智大学 私立 上智大学 2012年 第1問
次の各問いに答えよ.

(1)$0 \leqq x \leqq \pi$において
\[ y= \sin x + 2 \cos \left( x - \frac{\pi}{6} \right) \]
の最大値は$\sqrt{[ア]}$であり,最小値は$-\sqrt{[イ]}$である.
(2)$xy = 4x -y+28$を満たす正の整数$x,\ y$の組$(x,\ y)$は全部で[ウ]組ある.
(3)放物線$y=\displaystyle\frac{1}{2}x^2$は,$x$軸方向に[エ],$y$軸方向に$\displaystyle\frac{[オ]}{[カ]}$だけ平行移動すると,直線$y=-x$と直線$y=3x$の両方に接する.
(4)実数$x,\ y$が$x^2+xy+2y^2=1$を満たすとき,$y^2$がとり得る値の範囲は
\[ [キ] \leqq y^2 \leqq \frac{[ク]}{[ケ]} \]
である.
慶應義塾大学 私立 慶應義塾大学 2012年 第1問
次の各問いに答えよ.

(1)3つの行列の積
\[ \left(
x \quad y
\right) \left( \begin{array}{cc}
2 & a \\
a & 1
\end{array}
\right)
\left(
\begin{array}{c}
x \\
y
\end{array}
\right) \]
の成分が任意の実数$x,\ y$に対し0以上となるような実数$a$の範囲を不等式で表すと[ア]となる.
(2)$\angle B$が直角の直角三角形ABCの2辺AB,\ BCの長さをそれぞれ$3,\ 1$とする.また,$0<x<1$を満たす$x$に対し線分BCを$1:x$に外分する点をDとする.いま,$\angle \text{CAD}=2 \angle\text{BAC}$が成り立っているとすると,$x=[イ]$であり,$\triangle$ACDの外接円の半径は[ウ]である.
(3)関数$f(x),\ g(x)$が
\[
\left\{
\begin{array}{l}
f(x) = xe^x + 2x \displaystyle\int_0^2|g(t)|\, dt - 1 \\
\\
g(x) = x^2 -x \displaystyle\int_0^1 f(t)\,dt
\end{array}
\right.
\]
を満たすとき,$\displaystyle\int_0^2 |g(t)|\, dt$の値は[エ]または[オ]である.求める過程も解答欄(3)に書きなさい.
スポンサーリンク

「空欄補充」とは・・・

 まだこのタグの説明は執筆されていません。