タグ「空欄補充」の検索結果

114ページ目:全1740問中1131問~1140問を表示)
山梨大学 国立 山梨大学 2012年 第1問
次の問題文の枠内にあてはまる数あるいは数式を答えよ.

(1)関数$f(x)$が$p$を周期とする周期関数であるとは,すべての$x$で等式$[ ]$が成立することである.関数$\displaystyle g(x)=\sin^2 \left( 5x+\frac{\pi}{3} \right)$の正の最小の周期は$[ ]$である.
(2)実数$x$が$-\pi<x \leqq \pi$のとき,無限級数$\displaystyle \sum_{k=1}^\infty \sin^k x$が収束する条件は,$x$の値が$[ ]$以外のときであり,収束するときの無限級数の和は$[ ]$である.
(3)$\displaystyle \int_{-10}^0 \frac{1}{(x+11)(x+12)} \, dx=[ ]$であり,$\displaystyle \int_{-10}^0 \log (x+11) \, dx=[ ]$である.
(4)楕円$9x^2+4y^2+36x-40y+100=0$の$2$つの焦点のうち,$y$座標が大きい方の座標は$[ ]$である.この楕円の長軸の長さは$[ ]$である.
(5)関数$f(x)$を$f(x)=2x^2+1$とし,区間$[0,\ 1]$を$n$等分した小区間を,$\displaystyle \left[ \frac{0}{n},\ \frac{1}{n} \right]$,$\displaystyle \left[ \frac{1}{n},\ \frac{2}{n} \right]$,$\cdots$,$\displaystyle \left[ \frac{n-1}{n},\ \frac{n}{n} \right]$とする.各小区間を底辺とする$n$個の長方形の面積の総和をとる.$k$番目の小区間$\displaystyle \left[ \frac{k-1}{n},\ \frac{k}{n} \right]$において,長方形の高さとして左端での関数$f(x)$の値を用いたとき,この小区間での長方形の面積は$[ ]$となり,それらの長方形の面積の総和を$s_n$とする.また,$k$番目の小区間$\displaystyle \left[ \frac{k-1}{n},\ \frac{k}{n} \right]$において,長方形の高さとして右端での関数$f(x)$の値を用いたときの長方形の面積の総和を$S_n$とする.このとき,$S_n-s_n$は$[ ]$となる.
早稲田大学 私立 早稲田大学 2012年 第3問
$x$-$y$平面上に$3$点$\mathrm{O}(0,\ 0)$,$\displaystyle \mathrm{A} \left( \frac{1}{\sqrt{2}},\ 0 \right)$,$\displaystyle \mathrm{B} \left( 0,\ \frac{1}{\sqrt{2}} \right)$をとり,図のように,$\triangle \mathrm{OAB}$の各辺上または内部に,$\mathrm{DE} \para \mathrm{OB}$かつ$\angle \mathrm{DCE}$を直角とする二等辺三角形$\mathrm{CDE}$をとる.点$\mathrm{C}$,$\mathrm{E}$はそれぞれ$\mathrm{OB}$,$\mathrm{AB}$上の点とする.線分$\mathrm{CE}$の長さを$m (>0)$とおくとき,次の各問に答えよ.

(1)$m$の最大値を求めよ.
(2)$s,\ t$を正数とし,ベクトル$\overrightarrow{\mathrm{OC}}+s \overrightarrow{\mathrm{CD}}+t \overrightarrow{\mathrm{CE}}$を$[ア] \overrightarrow{\mathrm{OA}}+[イ] \overrightarrow{\mathrm{OB}}$と表すとき,空欄$[ア]$,$[イ]$をそれぞれ$s,\ t$および$m$の式で表せ.
(3)等式$\overrightarrow{\mathrm{OC}}+s \overrightarrow{\mathrm{CD}}+t \overrightarrow{\mathrm{CE}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$をみたす$s$,$t$をそれぞれ$m$の式で表せ.
(4)(3)で求めた$s,\ t$を用いて,点$\mathrm{P}(x,\ y)$を$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$によって定める.このとき,$\displaystyle \frac{y}{x}$を$\displaystyle \frac{1}{m}$の式で表せ.
(5)(4)における点$\mathrm{P}(x,\ y)$の軌跡は$x,\ y$の方程式
\[ (x+[ウ])^2+(y-[エ])^2=[オ] \]
で表される.このとき,空欄$[ウ]$,$[エ]$,$[オ]$にあてはまる数値を求めよ.
(図は省略)
早稲田大学 私立 早稲田大学 2012年 第1問
$a,\ b$を実数とする.$2$次方程式
\[ x^2+(a-1)x+b+1 = 0 \]
が実数解を持ち、すべての解の絶対値が$1$以下になっているとき,次の問いに答えよ.

(1)点$(a,\ b)$が存在する領域を$D$とする.$D$に含まれる
$a$の最大値は$[ア]$,最小値は$[イ]$,
$b$の最大値は$[ウ]$,最小値は$[エ]$である.
(2)領域$D$の面積は$[オ]$である.
早稲田大学 私立 早稲田大学 2012年 第1問
数直線上を動く点$\mathrm{P}$がある.点$\mathrm{P}$は原点を出発して,さいころを$1$回投げるごとに,$2$以下の目が出たときには正の向きに$1$だけ進み,$3$以上の目が出たときには負の向きに$2$だけ進むものとする.

(1)さいころを$3$回投げたとき,点$\mathrm{P}$が原点にくる確率は$\displaystyle\frac{[ア]}{[イ]}$である.ただし,[イ]はできるだけ小さな自然数で答えること.
(2)さいころを$5$回投げたとき,点$\mathrm{P}$の座標が$-4$または$2$になる確率は$\displaystyle\frac{[ウ]}{[エ]}$である.ただし,[エ]はできるだけ小さな自然数で答えること.
早稲田大学 私立 早稲田大学 2012年 第2問
三角形$\mathrm{OAB}$において$\mathrm{OA}=4,\ \mathrm{OB}=5,\ \mathrm{AB}=7$とする.点$\mathrm{P}$は辺$\mathrm{OA}$の中点,点$\mathrm{Q}$は辺$\mathrm{AB}$を$2:1$に内分する点とする.さらに点$\mathrm{R}$は辺$\mathrm{OB}$上にあり$\angle \mathrm{PQR}=90^\circ$である.このとき,
\[ \mathrm{OR} = \frac{[オ]}{[カ]}\mathrm{OB} \]
である.ただし,[カ]はできるだけ小さな自然数で答えること.
早稲田大学 私立 早稲田大学 2012年 第3問
曲線$x^2+y^2=100$($x \geqq 0$かつ$y \geqq 0$)を$C$とする.点$\mathrm{P},\ \mathrm{Q}$は$C$上にあり,線分$\mathrm{PQ}$の中点を$\mathrm{R}$とする.ただし,点$\mathrm{P}$と点$\mathrm{Q}$が一致するときは,点$\mathrm{R}$は点$\mathrm{P}$に等しいものとする.

(1)点$\mathrm{P}$の座標が$(6,\ 8)$であり,点$\mathrm{Q}$が$C$上を動くとき,点$\mathrm{R}$の軌跡は,
\[ (x-[キ])^2+(y-[ク])^2=[ケ],\ [コ] \leqq x \leqq [サ],\ [シ] \leqq y \leqq [ス] \]
である.
(2)点$\mathrm{P}$,$\mathrm{Q}$が$C$上を自由に動くとき,点$\mathrm{R}$の動く範囲の面積は,
\[ \frac{[セ]}{[ソ]}\pi + [タ] \]
である.ただし,$[ソ]$はできるだけ小さな自然数で答えること.
早稲田大学 私立 早稲田大学 2012年 第4問
以下の問いに答えよ.

(1)無限級数$\displaystyle\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$の和は$\displaystyle\frac{[チ]}{[ツ]}$である.\\
\quad ただし,[ツ]はできるだけ小さな自然数で答えること.
(2)行列
\[ A=\frac{1}{\sqrt{2}} \biggl( \begin{array}{cc}
1 & -1 \\
1 & 1
\end{array} \biggr) \]
に対して,
\[ A^n = \biggl( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \biggr)\]
となる最小の自然数$n$は[テ]である.
(3)$\displaystyle \int_0^{\frac{\pi}{2}}(2-x^2\sin x)\,dx = [ト]$である.
早稲田大学 私立 早稲田大学 2012年 第5問
実数$a$に対して関数$f(a)$を,
\[ f(a) = \int_1^2 \left|\frac{a}{x}-1\right|\, dx \]
と定める.$a$が$1 \leqq a \leqq 2$の範囲を動くとき,$f(a)$の最小値は$[ナ]+[ニ]\sqrt{[ヌ]}$であり,最大値は$[ネ]+[ノ]\log [ハ]$である.ただし,[ヌ],[ハ]はできるだけ小さな自然数で答えること.
早稲田大学 私立 早稲田大学 2012年 第1問
$[ア]$~$[エ]$にあてはまる数または式を解答用紙の所定欄に記入せよ.

(1)次の等式
\[ \log_3x - \frac{1}{\log_9x} = (-1)^x \]
を満たす正の整数$x$の値は$[ア]$である
(2)定数関数でない関数$f(x)$が
\[ f(x) = x^2 - \int_0^1 (f(t)+x)^2dt \]
を満たすとき,$f(x)=[イ]$である.
(3)$0<\theta \leqq 180^\circ$とする.数列$\{a_n\}$を次で定める.
\[ a_1 = \cos\theta, \quad a_{n+1}= a_n^2-1 \]
このとき,$a_4 = a_5$となる$\cos\theta$の最大値は$[ウ]$である.
(4)体積が$1$の正四面体の各辺の中点を頂点とする正八面体の体積は$[エ]$である.
早稲田大学 私立 早稲田大学 2012年 第1問
$p,\ q$を$1$でない自然数とする.このとき,
\[ 2(1-\log_210)\log_5 p + \log_2\frac{2012}{q} = 0 \]
を満たす$p$の値は$[ア]$である
スポンサーリンク

「空欄補充」とは・・・

 まだこのタグの説明は執筆されていません。