タグ「空欄補充」の検索結果

103ページ目:全1740問中1021問~1030問を表示)
京都薬科大学 私立 京都薬科大学 2013年 第1問
次の$[ ]$にあてはまる数を記入せよ.

(1)直線$(1-k)x+(1+k)y-k-3=0$は定数$k$の値によらず定点$\mathrm{A}$を通る.このとき,定点$\mathrm{A}$の座標は,$([ ],\ [ ])$である.また,中心が点$\mathrm{A}$で,直線$x+y=5$に接する円の半径は$[ ]$となる.
(2)空間の$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(1,\ 2,\ -3)$,$\mathrm{B}(1,\ -1,\ 1)$において,線分$\mathrm{AB}$を$2:1$に内分する点$\mathrm{C}$の座標は,$([ ],\ [ ],\ [ ])$である.また,このとき,$\cos \angle \mathrm{AOC}=[ ]$となる.
(3)$\triangle \mathrm{ABC}$において,$\mathrm{AB}=3$,$\mathrm{BC}=5$,$\mathrm{CA}=6$とする.また,$\angle \mathrm{BAC}$の$2$等分線と辺$\mathrm{BC}$の交点を$\mathrm{P}$とする.このとき,$\triangle \mathrm{ABC}$の面積は$[ ]$となり,$\mathrm{BP}=[ ]$,$\mathrm{AP}=[ ]$となる.$\triangle \mathrm{ABC}$の内接円の半径を$r$とすると,$r=[ ]$である.
(4)$4$つの数
$\log_2 (\log_4 (\log_8 16))$,$\log_4 (\log_8 (\log_2 16))$,$\log_8 (\log_2 (\log_4 16))$,$\log_2 (\log_8 (\log_4 16))$の大小を比較すると,$[ ]<[ ]<[ ]<[ ]$となる.
京都薬科大学 私立 京都薬科大学 2013年 第2問
$0$から$9$までの数字を$1$つずつ書いた$10$個の球が袋に入っている.この袋から$1$つずつ順に球を取り出す試行において,次の$[ ]$にあてはまる数を記入せよ.

(1)$8$を書いた球より前に$1$を書いた球が取り出される確率は$[ ]$である.
(2)$6$を書いた球と$8$を書いた球のどちらよりも前に,$1$を書いた球が取り出される確率は$[ ]$である.
(3)$6$を書いた球と$8$を書いた球のどちらかよりも前に,$1$を書いた球が取り出される確率は$[ ]$である.
$m$を書いた球と$n$を書いた球が取り出されたとき,$m$と$n$がそろったということにする.例えば,$10$個の球に書かれた数字が取り出された順に$8$,$1$,$4$,$9$,$5$,$3$,$6$,$0$,$2$,$7$であった場合には,$9$つ目の球が取り出された段階で$1$と$2$がそろったということである.
(4)$7$と$8$がそろうよりも前に$1$と$2$がそろう確率は$[ ]$である.
(5)$1$と$2$がそろうのが,$7$と$8$がそろうより前であり,かつ,$4$と$6$がそろうよりも前である確率は$[ ]$である.
(6)$1$と$2$がそろうのが,$7$と$8$がそろうより前であるか,または,$4$と$6$がそろうより前である確率は$[ ]$である.
(7)$7$と$8$がそろうよりも前に$1$と$8$がそろう確率は$[ ]$である.ただし,$10$個の球に書かれた数字が,取り出された順に$9$,$1$,$4$,$7$,$5$,$3$,$8$,$0$,$2$,$6$である場合のように$7$と$8$,$1$と$8$が同時にそろう場合は,$7$と$8$がそろうよりも前に$1$と$8$がそろう場合に含めないものとする.
京都薬科大学 私立 京都薬科大学 2013年 第3問
濃度$a \, \%$の食塩水$300 \, \mathrm{g}$が入っている容器$\mathrm{A}$と,濃度$b \, \%$の食塩水$400 \, \mathrm{g}$が入っている容器$\mathrm{B}$がある.$\mathrm{A}$より$100 \, \mathrm{g}$の食塩水をとってそれを$\mathrm{B}$に移し,よくかき混ぜた後に同量を$\mathrm{A}$に戻すとする.この操作を$n$回繰り返したときの$\mathrm{A}$,$\mathrm{B}$の食塩水の濃度を求めたい.次の$[ ]$にあてはまる数または式を記入せよ.

(1)容器$\mathrm{A}$と容器$\mathrm{B}$に,最初にあった食塩の量の和は$[$*$] \mathrm{g}$である.
(2)$n (\geqq 1)$回の操作の後,容器$\mathrm{A}$の濃度が$x_n \, \%$,容器$\mathrm{B}$の濃度が$y_n \, \%$になっていたとする.$y_n$を$x_{n-1}$と$y_{n-1}$を用いて表すと,
\[ y_n=[ ] x_{n-1}+[ ] y_{n-1} \]
となる.また,$x_n$を$x_{n-1}$と$y_{n-1}$を用いて表すと,
\[ x_n=[ ] x_{n-1}+[ ] y_{n-1} \]
となる.
(3)食塩の量の和は一定であることに注意すると,
\[ [$* *$] x_n+[$***$] y_n=[$**$] x_{n-1}+[$***$] y_{n-1}=\cdots =[$*$] \]
(4)$(3)$で与えられた関係式を使って,数列$\{x_n\}$の漸化式をつくると,
\[ x_n=[ ] x_{n-1}+[ ] \]
となる.この漸化式を解くことによって,$x_n$を$a$と$b$および$n$を用いて表すと,
\[ x_n=[ ] \]
また,$y_n$を$a$と$b$および$n$を用いて表すと,
\[ y_n=[ ] \]
となる.
吉備国際大学 私立 吉備国際大学 2013年 第1問
次の問いに答えよ.

(1)$x^2+ax+2x+3a-3$を因数分解せよ.
(2)男$4$人,女$2$人が一列に並ぶとき,女$2$人が隣接する並び方は$[ ]$通り.
(3)$x^2-11x+1>0$を解け.
(4)$\displaystyle \tan \theta=\frac{1}{2}$のとき,$\sin \theta=[ ]$である.
(5)循環小数$1. \dot{2} \dot{1}$を分数で表せ.
京都薬科大学 私立 京都薬科大学 2013年 第4問
放物線$y={(x-1)}^2$上の異なる$2$点$\mathrm{A}(a,\ {(a-1)}^2)$,$\mathrm{B}(b,\ {(b-1)}^2)$における$2$つの接線を,それぞれ,$\ell_1,\ \ell_2$とする.ただし,$a<b$とする.また,点$\mathrm{A}$を通り$\ell_1$と直交する直線を${\ell_1}^\prime$,点$\mathrm{B}$を通り$\ell_2$と直交する直線を${\ell_2}^\prime$とする.次の$[ ]$にあてはまる数または式を記入せよ.

(1)$\ell_1$と$\ell_2$の交点の座標を$a,\ b$を使って表すと,$([ ],\ [ ])$である.
(2)この放物線と$\ell_1,\ \ell_2$で囲まれた部分の面積$S$を$a,\ b$を使って表すと,$[ ]$である.
(3)${\ell_1}^\prime$と${\ell_2}^\prime$が直交するとき,$(2)$で求めた$S$の最小値は$[ ]$である.このとき,$a=[ ]$,$b=[ ]$となり,$\ell_1$,${\ell_1}^\prime$,$\ell_2$,${\ell_2}^\prime$の$4$つの直線で囲まれた部分の面積は$[ ]$となる.
同志社大学 私立 同志社大学 2013年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)$a,\ b$を定数とする.座標平面において,$x^2+y^2+ax+by=0$は中心を点$([ ],\ [ ])$とする半径$[ ]$の円の方程式である.サイコロを$2$度投げ,最初に出た目を$a$とし,次に出た目を$b$とする.この円の内部の面積が$4 \pi$以下である確率は$[ ]$である.また,この円が直線$x+y=a-b$と異なる$2$点で交わる確率は$[ ]$である.
(2)$2013$を素因数分解すると$[ ]$である.$x=[ ]$,$y=0$は,方程式$11x+25y=2013$をみたす.$x,\ y$を共に$0$以上の整数とするとき,方程式$11x+25y=2013$をみたす$(x,\ y)$の組は全部で$[ ]$組あり,それらの中で$x^2+y^2$の値が最大になるのは$x=[ ]$,$y=[ ]$のときである.
同志社大学 私立 同志社大学 2013年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)行列$A=\left( \begin{array}{cc}
\cos \alpha & \sin \alpha \\
\sin \alpha & -\cos \alpha
\end{array} \right)$と$B=\left( \begin{array}{cc}
\cos \beta & \sin \beta \\
\sin \beta & -\cos \beta
\end{array} \right) (0<\beta<\alpha<2\pi)$の積$AB$の$(1,\ 1)$成分は$\theta=\alpha-\beta$を用いて表すと$[ ]$となり,$(1,\ 2)$成分は$\theta$を用いて表すと$[ ]$となる.ここで点$\mathrm{P}_1(\sqrt{2},\ \sqrt{2})$が$AB$で表される$1$次変換によって点$\displaystyle \mathrm{P}_2 \left( \frac{\sqrt{6}-\sqrt{2}}{2},\ \frac{\sqrt{6}+\sqrt{2}}{2} \right)$に移るとすると$\theta=[ ]$となる.このとき,${(AB)}^{25}$で表される$1$次変換によって点$\mathrm{P}_1$が移る点の$x$座標は$[ ]$となり,$((AB)^{-1})^{2013}$で点$\mathrm{P}_1$が移る点の$x$座標は$[ ]$となる.
(2)関数$f(x)=(ax^2+bx)e^{-x^2}$は$\displaystyle x=\frac{1}{2}$で極大値$1$をとるとする.このとき,$a=[ ]$,$b=[ ]$であり,$f(x)>0$を満たす範囲は$0<x<[ ]$となる.この区間で関数$g(x)=\log f(x)$を考える.曲線$C:y=g(x)$の点$\displaystyle \left( 1,\ -\frac{3}{4} \right)$における接線の方程式は$y=[ ]$となり,曲線$C$と直線$y=k$が共有点をもたない$k$の値の範囲は$[ ]$となる.
星薬科大学 私立 星薬科大学 2013年 第2問
$n$を$2$以上の自然数とし,$n$人でじゃんけんをして勝敗が決まるまでじゃんけんをくり返すとする.次の問に答えよ.

(1)$n=2$のとき,$1$回目のじゃんけんで勝敗が決まる確率は$\displaystyle \frac{[ ]}{[ ]}$,$2$回目のじゃんけんで勝敗が決まる確率は$\displaystyle \frac{[ ]}{[ ]}$である.
(2)$n=3$のとき,$4$回目のじゃんけんで$1$人が勝って勝敗が決まる確率は$\displaystyle \frac{[ ]}{[][]}$である.また,$4$回目のじゃんけんで勝敗が決まる確率は$\displaystyle \frac{[ ]}{[][]}$である.
(3)$1$回目のじゃんけんで勝敗が決まる確率よりも,決まらない確率の方が大きくなる場合の$n$の最小値は$[ ]$である.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2013年 第1問
$e$を自然対数の底,$b$を実数として,数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$が条件$①$および$②$を満たしているとき,次の問いに答えなさい.

$\displaystyle a_1=\frac{e-e^2+b}{1-e} \qquad \cdots\cdots①$
$a_{n+1}=ea_n+b \qquad\quad\!\;\!\!\, \cdots\cdots②$

(1)$b=11$のとき,$a_n$を$n$の式で表すと,$a_n=[$1$]$となる.また,
\[ \sum_{k=1}^n \log_e \left( a_k+\frac{11}{e-1} \right)=[$2$] \]
となる.
(2)$b=e^{11}$のとき,$\displaystyle \sum_{k=1}^n a_k$の値は$n=[$3$]$のとき最小となる.
同志社大学 私立 同志社大学 2013年 第1問
次の$[ ]$に適する数または式を記入せよ.

サッカーの国際大会に日本,$\mathrm{A}$国および$\mathrm{B}$国の$3$ヶ国が参加し,優勝国は次のように決定される.
(i) $3$つの国のうち$2$つの国が試合をする.勝った国が残りの$1$つの国と試合をし, $2$連勝する国が生じるまで試合を繰り返す.この連勝国を優勝国とし,大会を終了する.
(ii) 各試合において,引き分けは無く,必ず勝敗が決まる.
日本が$\mathrm{A}$国,$\mathrm{B}$国に勝つ確率をそれぞれ$\displaystyle \frac{1}{2},\ \frac{1}{3}$とし,$\mathrm{A}$国が$\mathrm{B}$国に勝つ確率は$\displaystyle \frac{2}{3}$とする.第$1$戦は日本と$\mathrm{A}$国が対戦する.
第$2$戦で日本が優勝する確率は$[ ]$であり,第$3$戦で日本が優勝する確率は$[ ]$であり,第$4$戦で日本が優勝する確率は$[ ]$であり,第$5$戦で日本が優勝する確率は$[ ]$である.ゆえに第$3n+2$戦($n$は$0$以上の整数)で日本が優勝する確率$p_n$は$p_n=[ ]$となる.このとき$\displaystyle \lim_{n \to \infty} \sum_{k=0}^n p_k=[ ]$となる.一方,第$7$戦で日本が優勝する確率は$[ ]$となる.第$3n+1$戦($n$は$1$以上の整数)で日本が優勝する確率$q_n$は$q_n=[ ]$となる.このとき$\displaystyle \lim_{n \to \infty} \sum_{k=1}^n q_k=[ ]$となる.また第$3n$戦($n$は$1$以上の整数)で日本が優勝する確率$r_n$は$r_n=[ ]$となる.
スポンサーリンク

「空欄補充」とは・・・

 まだこのタグの説明は執筆されていません。