タグ「積分」の検索結果

1ページ目:全83問中1問~10問を表示)
香川大学 国立 香川大学 2016年 第4問
座標平面上の曲線$C:y=e^x$に対し,次の問に答えよ.

(1)原点から曲線$C$に引いた接線$\ell$の方程式を求めよ.
(2)曲線$C$と接線$\ell$,および$y$軸で囲まれた図形$D$を図示せよ.
(3)$D$を$x$軸のまわりに$1$回転させてできる立体の体積を求めよ.
(4)部分積分法を用いて,不定積分$\displaystyle I=\int \log y \, dy$,$\displaystyle J=\int (\log y)^2 \, dy$を求めよ.
(5)$D$を$y$軸のまわりに$1$回転させてできる立体の体積を求めよ.
香川大学 国立 香川大学 2016年 第4問
座標平面上の曲線$C:y=e^x$に対し,次の問に答えよ.

(1)原点から曲線$C$に引いた接線$\ell$の方程式を求めよ.
(2)曲線$C$と接線$\ell$,および$y$軸で囲まれた図形$D$を図示せよ.
(3)$D$を$x$軸のまわりに$1$回転させてできる立体の体積を求めよ.
(4)部分積分法を用いて,不定積分$\displaystyle I=\int \log y \, dy$,$\displaystyle J=\int (\log y)^2 \, dy$を求めよ.
(5)$D$を$y$軸のまわりに$1$回転させてできる立体の体積を求めよ.
電気通信大学 国立 電気通信大学 2016年 第1問
関数
\[ f(x)=2 \sin x+\sqrt{6} \sin 2x \]
について,以下の問いに答えよ.

(1)導関数$f^\prime(x)$および不定積分$\displaystyle \int f(x) \, dx$を求めよ.ただし,積分定数は省略してもよい.
(2)区間$0<x<\pi$において$f(x)=0$となる$x$の値を$\alpha$とする.このとき,$\cos \alpha$と$\cos 2 \alpha$の値を求めよ.
(3)区間$0<x<\pi$において$f^\prime(x)=0$となる$x$の値を$\beta,\ \gamma (\beta<\gamma)$とする.このとき,$\cos \beta$と$\cos \gamma$の値を求めよ.
(4)区間$0 \leqq x \leqq \pi$における$f(x)$の最大値を求めよ.
(5)曲線$y=f(x) (0 \leqq x \leqq \pi)$と$x$軸で囲まれた$2$つの部分の面積の和$S$を求めよ.
獨協医科大学 私立 獨協医科大学 2016年 第5問
$xy$平面上の放物線$y=x^2$の$0 \leqq x \leqq 1$に対応する部分の長さを$L$とする.$L$の値を次のようにして求めよう.$L$は定積分
\[ L=\int_0^1 \sqrt{1+[ア]x^2} \, dx \]
で定まる.この定積分を計算するために$\displaystyle x=\frac{e^t-e^{-t}}{4}$として,置換積分を行う.このとき
\[ \frac{dx}{dt}=\frac{e^t+e^{-t}}{4} \]
であり
\[ \sqrt{1+[ア]x^2}=\frac{e^t+e^{-t}}{[イ]} \]
である.

また,$\displaystyle \frac{e^t-e^{-t}}{4}=1$となる$t$の値を$\alpha$とすると,$x$が$0 \to 1$と変化するとき,$t$は$[ウ] \to \alpha$と変化するので,$L$を定める定積分は
\[ L=\frac{1}{[エ]} \int_{\mkakko{ウ}}^\alpha (e^t+e^{-t})^{\mkakko{オ}} \, dt \]
となる.ここで$X=e^\alpha$とおくと,$X$は$2$次方程式
\[ X^2-[カ]X-[キ]=0 \]
の解である.$X>0$なので
\[ X=[ク]+\sqrt{[ケ]} \]
である.これを用いて$\alpha$の値を定め,$L$の値を計算すると
\[ L=\frac{\sqrt{[コ]}}{[サ]}+\frac{1}{[シ]} \log \left( [ス]+\sqrt{[セ]} \right) \]
である.
大阪工業大学 私立 大阪工業大学 2016年 第3問
関数$\displaystyle f(x)=\frac{\log x}{(x+e)^2}$について,次の問いに答えよ.ただし,$e$は自然対数の底とする.

(1)$\displaystyle \frac{e}{x(x+e)}=\frac{A}{x}+\frac{B}{x+e}$が,$x$についての恒等式となるような定数$A,\ B$の値を求めよ.
(2)不定積分$\displaystyle \int \frac{1}{x(x+e)} \, dx$を求めよ.
(3)部分積分法を用いて,定積分$\displaystyle \int_1^{e^2} f(x) \, dx$を求めよ.
大阪工業大学 私立 大阪工業大学 2016年 第4問
関数$f(x)=x+\sqrt{4-x^2} (-2 \leqq x \leqq 2)$について,次の問いに答えよ.

(1)導関数$f^\prime(x)$を求めよ.
(2)$f^\prime(-\sqrt{2})$の値を求めよ.また,$f^\prime(x)=0$を解け.
(3)$f(x)$の増減を調べ,$y=f(x)$のグラフをかけ.ただし,凹凸は調べなくてもよい.
(4)$4-x^2=t$とおき,置換積分法を用いて不定積分$\displaystyle \int x \sqrt{4-x^2} \, dx$を求めよ.
(5)曲線$y=f(x)$,$x$軸および直線$x=2$で囲まれた図形を$x$軸のまわりに$1$回転してできる立体の体積$V$を求めよ.
東京電機大学 私立 東京電機大学 2016年 第1問
次の各問に答えよ.

(1)不等式$x^2-x-5<|2x-1|$を解け.
(2)和が$22$,最小公倍数が$60$となる$2$つの自然数を求めよ.
(3)関数$y=4 \sin^2 x-4 \cos x-3 (0 \leqq x \leqq \pi)$の最大値を求めよ.またそのときの$x$の値を求めよ.
(4)曲線$y=e^x$上の点$(t,\ e^t)$と直線$y=2x$の距離を$d(t)$とする.$d(t)$の最小値を求めよ.
(5)不定積分$\displaystyle \int \log 2x \, dx$を計算せよ.ただし積分定数は$C$とすること.
明治大学 私立 明治大学 2016年 第3問
次の空欄に当てはまる$0$から$9$までの数字を入れよ.ただし,空欄$[サシ]$は$2$桁の数をあらわす.

(1)$k$を自然数とすると
\[ \int_0^\pi \sin^k x \cos x \, dx=[ア] \]
である.
(2)直線$y=\sqrt{3}x$を$\ell$とし,曲線$y=\sqrt{3}x+\sin^2 x$を$C$とする.直線$\ell$上に点$\mathrm{A}$をとり,点$\mathrm{A}$において直線$\ell$と直交する直線を$L$とする.関数$y=\sqrt{3}x+\sin^2 x$は$x$に関する単調増加関数であるので,直線$L$と曲線$C$の共有点は$1$点のみである.その共有点を$\mathrm{B}(t,\ \sqrt{3}t+\sin^2 t)$とする.点$\mathrm{A}$と点$\mathrm{B}$の距離を$h$とおくと,
\[ h=\frac{1}{[イ]} \sin^2 t \]
となる.また,原点$\mathrm{O}$と点$\mathrm{A}$の距離を$p$とする.点$\mathrm{A}$の$x$座標が$0$以上であるときは
\[ p=[ウ]t+\frac{\sqrt{[エ]}}{[オ]} \sin^2 t \]
となる.この等式の右辺を$f(t)$とおく.
$0 \leqq x \leqq \pi$の範囲で曲線$C$と直線$\ell$で囲まれた図形を考え,その図形を直線$\ell$の周りに$1$回転させてできる立体の体積を$V$とすると,$\displaystyle V=\pi \int_0^{\mkakko{カ} \pi} h^2 \, dp$となる.ここで,$p=f(t)$とおいて置換積分すれば,
\[ V=\frac{\pi}{[キ]} \int_0^{\pi} \sin^4 t \, dt \]
が成り立つ.$\displaystyle \int_0^{\pi} \sin^4 t \, dt=\frac{[ク]}{[ケ]} \pi$より,$\displaystyle V=\frac{[コ]}{[サシ]} \pi^2$である.
横浜市立大学 公立 横浜市立大学 2016年 第1問
以下の問いに答えよ.

(1)ある大学で$N$人の学生が数学を受験した.その得点を$x_1,\ x_2,\ \cdots,\ x_N$とする.平均値$\overline{x}$および分散$s^2$は各々

$\displaystyle \overline{x}=\frac{x_1+x_2+\cdots +x_N}{N}$
$\displaystyle s^2=\frac{(x_1-\overline{x})^2+(x_2-\overline{x})^2+\cdots +(x_N-\overline{x})^2}{N}$

で与えられる.標準偏差$s (>0)$は
\[ s=\sqrt{s^2} \]
となる.このとき$x$点を取った学生の{\bf 偏差値}は
\[ t=50+10 \times \frac{x-\overline{x}}{s} \]
で与えられる($x \in \{x_1,\ x_2,\ \cdots,\ x_N\}$).偏差値は{\bf 無単位}であることに注意せよ.
$\mathrm{Y}$大学で$N=3n$人の学生が数学を受験し,たまたま$2n$人の学生が$a$点,残りの$n$人の学生が$b$点を取ったとしよう.簡単にするために$a<b$とする.$a$点を取った学生および$b$点を取った学生の偏差値を求めよ.
(2)方程式
\[ x^2-3y^2=13 \]
の整数解を求める.簡単にするために$x>0,\ y>0$とする.まず
\[ X=ax+by,\quad Y=cx+dy \]
とおく.$a,\ b,\ c,\ d$を自然数として,$(X,\ Y)$が再び方程式
\[ X^2-3Y^2=13 \]
を満たすための組$(a,\ b,\ c,\ d)$を$1$つ求めよ.
次に,解の組$(x,\ y)$で$x>500$となる$(x,\ y)$を$1$つ求めよ.
(3)$n$を自然数とする.漸化式

$a_{n+2}-5a_{n+1}+6a_n-6n=0$
$a_1=1,\ a_2=1$

で定められる数列$\{a_n\}$の一般項を求めよ.
(4)$n$を$0$以上の整数とする.以下の不定積分を求めよ.
\[ \int \left\{ -\frac{(\log x)^n}{x^2} \right\} \, dx=\sum_{k=0}^n [ ] \]
ただし,積分定数は書かなくてよい.
横浜市立大学 公立 横浜市立大学 2016年 第3問
関数$y=\tan x$は,区間$\displaystyle -\frac{\pi}{2}<x<\frac{\pi}{2}$で単調増加である.したがって,この区間で逆関数を作ることが出来る.それを
\[ y=\phi(x) \quad (-\infty<x<\infty) \]
と書く(この逆関数を$\mathrm{Arctan} \ x$と書く参考書もある).正確を期すために,$\displaystyle -\frac{\pi}{2}<\phi(x)<\frac{\pi}{2}$としておく.以下の問いに答えよ.ただし,「$-\infty<x<\infty$」は「$x$は実数」という意味である.

(1)関数$f(x)$を
\[ f(x)=\frac{1}{4 \sqrt{2}} \log \frac{x^2+\sqrt{2}x+1}{x^2-\sqrt{2}x+1}+\frac{1}{2 \sqrt{2}} \left\{ \phi(\sqrt{2}x+1)+\phi(\sqrt{2}x-1) \right\} \]
とおく.$f(x)$の導関数$f^\prime(x)$を求めよ.
(2)積分
\[ \int_0^1 \frac{1}{x^4+1} \, dx \]
を求めたい.正確な値は求められないので,以下のようにする.即ち,関数$G(x)$で
\[ \int_0^1 \frac{1}{x^4+1} \, dx=G(\sqrt{2}+1) \]
となる関数を求めよ.
(3)積分の等式
\[ \int_0^\pi \frac{x \sin x}{1+\cos^4 x} \, dx=\pi \int_0^{\frac{\pi}{2}} \frac{\sin x}{1+\cos^4 x} \, dx \]
を示せ.
(4)積分
\[ \int_0^{\pi} \frac{x \sin x}{1+\cos^4 x} \, dx \]
を求めよ.
スポンサーリンク

「積分」とは・・・

 まだこのタグの説明は執筆されていません。