タグ「確率変数」の検索結果

2ページ目:全15問中11問~20問を表示)
鹿児島大学 国立 鹿児島大学 2013年 第8問
確率変数$X$のとる値の範囲が$0 \leqq X \leqq 2$で,その確率密度関数$f(x)$が次の式で与えられるものとする.
\[ f(x)=\left\{ \begin{array}{ll}
\displaystyle\frac{k}{a}x & (0 \leqq x \leqq a) \\
\displaystyle\frac{k}{2-a}(2-x) & (a<x \leqq 2)
\end{array} \right. \]
ここで,$a,\ k$は$0<a<1,\ k>0$を満たす定数である.次の各問いに答えよ.

(1)定数$k$の値を求めよ.
(2)$X$の平均(期待値)$E(X)$を$a$を用いて表せ.
(3)$P(X \leqq u)=0.5$となる実数$u$を$a$を用いて表せ.
鹿児島大学 国立 鹿児島大学 2012年 第8問
確率変数$Z$が標準正規分布$N(0,\ 1)$に従うとき,
\[ P(Z>1.96)=0.025,\ P(Z>2.58)=0.005,\ \frac{2.58}{1.96} \fallingdotseq 1.32 \]
であるとして,次の各問いに答えよ.

(1)確率変数$X$のとる値$x$の範囲が$-1 \leqq x \leqq 1$で,その確率密度関数が$f(x)=k(1-x^2)$で与えられている.このとき,定数$k$の値と$X$の平均を求めよ.
(2)母平均$m$,母標準偏差10の母集団から大きさ100の無作為標本を抽出し,その標本平均を$\overline{X^{\phantom{1}}\!\!}$とする.標本の大きさ100は十分大きい数であるとみなせるとする.

(3)標本平均$\overline{X^{\phantom{1}}\!\!}$を用いて,母平均$m$の信頼度$95\%$の信頼区間を求めよ.
(4)母平均$m$を信頼度$99\%$の信頼区間を用いて区間推定するとき,信頼区間の幅を(a)で求めた幅より小さくするためには,標本の大きさ$n$をいくつ以上にとればよいか求めよ.
浜松医科大学 国立 浜松医科大学 2012年 第4問
$1$個のさいころを$3$回投げる.$1$回目,$2$回目,$3$回目に出る目の数をそれぞれ$X_1,\ X_2,\ X_3$として,$3$つの確率変数
\[ Y=4X_1+X_2,\quad Z_1=2X_1+3X_2,\quad Z_2=2X_1+3X_3 \]
を定める.$1$から$6$までの目は等確率で出るものとするとき,以下の問いに答えよ.

(1)数の集合$U=\{x \;|\; x \text{は整数かつ}5 \leqq x \leqq 30 \}$を全体集合として,
\[ \begin{array}{l}
\displaystyle S=\left\{ x \;\bigg|\; x \in U \text{かつ} P(Y=x)>\frac{1}{36} \right\} \\ \\
\displaystyle T=\left\{ x \;\bigg|\; x \in U \text{かつ} P(Z_1=x)>\frac{1}{36} \right\}
\end{array} \]
を定める.部分集合$S$と$T$の要素をそれぞれ列挙せよ.
(2)$Y$の値が$S$に属するという事象を$A$とし,$i=1,\ 2$に対して$Z_i$の値が$T$に属するという事象を$B_i$とする.次の問いに答えよ.

(i) $i=1,\ 2$に対し,等式$P(A \cap B_i)=P(A)P(B_i)$が成り立つかどうか,それぞれ調べよ.
(ii) 条件つき確率$P_A(B_1 \cap B_2)$の定義式をかき,その値を求めよ.
鹿児島大学 国立 鹿児島大学 2011年 第8問
次の各問いに答えよ.

(1)確率変数$X$は$0$以上$3$以下の値をとり,その確率密度関数$f(x)$は次で与えられているとする.このとき,定数$k$,平均$E(X)$を求めよ.
\[ f(x)=\left\{
\begin{array}{cl}
\displaystyle\frac{1}{2} & (0 \leqq x<1 \text{のとき}) \\
-\displaystyle\frac{1}{4}x+k & (1 \leqq x \leqq 3 \text{のとき})
\end{array}
\right. \]
(2)$Z$を標準正規分布$N(0,\ 1)$に従う確率変数とする.また,任意の$x \ (x \geqq 0)$に対して,関数$g(x)$を$g(x)=P( 0 \leqq Z \leqq x)$とおく.このとき,次の各問いに答えよ.

\mon[(a)] 確率$P(a \leqq Z \leqq b)$を関数$g$で表せ.ただし,$a$と$b$は定数で$a<b$とする.
\mon[(b)] 母平均$50$,母標準偏差$3 \sqrt{10}$の母集団から大きさ$10$の標本を抽出するとき,標本平均が$41.0$以上$48.5$以下になる確率を関数$g$で表せ.
\mon[(c)] $0<p<1$とし,$l_p$は$\displaystyle g(l_p)=\frac{p}{2}$をみたすものとする.母分散$25$の母集団から大きさ$20$の標本を抽出したところ,標本平均が$45$であった.母平均$m$に対する信頼度$100p \%$の信頼区間の区間幅を$l_p$を用いて表せ.
鹿児島大学 国立 鹿児島大学 2010年 第8問
数字1が書かれたカードが1枚,数字2が書かれたカードが2枚,数字3が書かれたカードが1枚の合計4枚のカードがある.この4枚のカードを母集団とし,カードに書かれている数字を変量とする.このとき,次の各問いに答えよ.ただし,母集団の中から標本を抽出するのに,毎回もとに戻してから次のものを1個ずつ取り出すことを復元抽出といい,取り出したものをもとに戻さずに続けて抽出することを非復元抽出という.

(1)母平均$m$と母標準偏差$\sigma$を求めよ.
(2)この母集団から,非復元抽出によって,大きさ2の無作為標本を抽出し,そのカードの数字を取り出した順に$Y_1$,$Y_2$とする.標本平均$\displaystyle \overline{Y}=\frac{Y_1+Y_2}{2}$の確率分布,期待値$E(\overline{Y})$,標準偏差$\sigma(\overline{Y})$を求めよ.
(3)この母集団から,復元抽出によって,大きさ200の無作為標本を抽出し,その標本平均を$\overline{X}$とする.このとき,標本平均$\overline{X}$が近似的に正規分布に従うとみなすことができるとして,$P(\overline{X}<a)=0.05$を満たす定数$a$を求めよ.ただし,確率変数$Z$が標準正規分布$N(0,\ 1)$に従うとき,$P(Z>1.65)=0.05$とする.
スポンサーリンク

「確率変数」とは・・・

 まだこのタグの説明は執筆されていません。