タグ「硬貨」の検索結果

6ページ目:全78問中51問~60問を表示)
富山大学 国立 富山大学 2012年 第3問
行列$A=\biggl( \begin{array}{cc}
0 & x \\
y & z
\end{array} \biggr),\ B=\biggl( \begin{array}{cc}
0 & w \\
w & 0
\end{array} \biggr)$は次の条件(ア),(イ)を満たしているとする.

\mon[(ア)] $A^2+A+E=O$
\mon[(イ)] $B^2=E$

ただし,$E=\biggl( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \biggr),\ O=\biggl( \begin{array}{cc}
0 & 0 \\
0 & 0
\end{array} \biggr)$である.

(1)$x,\ y,\ z,\ w$がすべて整数で$x < yw$を満たすとき,$x,\ y,\ z,\ w$を求めよ.
(2)(1)で求めた$x,\ y,\ z,\ w$に対して,ベクトル$\biggl( \begin{array}{c}
p_n \\
q_n
\end{array} \biggr) \ (n=0,\ 1,\ 2,\ \cdots)$を次のように定める.
\begin{itemize}
$\biggl( \begin{array}{c}
p_0 \\
q_0
\end{array} \biggr) = \biggl( \begin{array}{c}
1 \\
1
\end{array} \biggr)$
$\biggl( \begin{array}{c}
p_n \\
q_n
\end{array} \biggr)$が決まったとき,硬貨を投げて表が出れば$\biggl( \begin{array}{c}
p_{n+1} \\
q_{n+1}
\end{array} \biggr)=A \biggl( \begin{array}{c}
p_n \\
q_n
\end{array} \biggr)$,裏が出れば$\biggl( \begin{array}{c}
p_{n+1} \\
q_{n+1}
\end{array} \biggr)=B \biggl( \begin{array}{c}
p_n \\
q_n
\end{array} \biggr)$とする.
\end{itemize}
このとき,$\biggl( \begin{array}{c}
p_3 \\
q_3
\end{array} \biggr)=\biggl( \begin{array}{c}
1 \\
1
\end{array} \biggr)$となる確率を求めよ.
富山大学 国立 富山大学 2012年 第3問
行列$A=\biggl( \begin{array}{cc}
0 & x \\
y & z
\end{array} \biggr),\ B=\biggl( \begin{array}{cc}
0 & w \\
w & 0
\end{array} \biggr)$は次の条件(ア),(イ)を満たしているとする.

\mon[(ア)] $A^2+A+E=O$
\mon[(イ)] $B^2=E$

ただし,$E=\biggl( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \biggr),\ O=\biggl( \begin{array}{cc}
0 & 0 \\
0 & 0
\end{array} \biggr)$である.

(1)$x,\ y,\ z,\ w$がすべて整数で$x < yw$を満たすとき,$x,\ y,\ z,\ w$を求めよ.
(2)(1)で求めた$x,\ y,\ z,\ w$に対して,ベクトル$\biggl( \begin{array}{c}
p_n \\
q_n
\end{array} \biggr) \ (n=0,\ 1,\ 2,\ \cdots)$を次のように定める.
\begin{itemize}
$\biggl( \begin{array}{c}
p_0 \\
q_0
\end{array} \biggr) = \biggl( \begin{array}{c}
1 \\
1
\end{array} \biggr)$
$\biggl( \begin{array}{c}
p_n \\
q_n
\end{array} \biggr)$が決まったとき,硬貨を投げて表が出れば$\biggl( \begin{array}{c}
p_{n+1} \\
q_{n+1}
\end{array} \biggr)=A \biggl( \begin{array}{c}
p_n \\
q_n
\end{array} \biggr)$,裏が出れば$\biggl( \begin{array}{c}
p_{n+1} \\
q_{n+1}
\end{array} \biggr)=B \biggl( \begin{array}{c}
p_n \\
q_n
\end{array} \biggr)$とする.
\end{itemize}


\mon[(a)] $\biggl( \begin{array}{c}
p_n \\
q_n
\end{array} \biggr)$は$\biggl( \begin{array}{c}
1 \\
1
\end{array} \biggr),\ \biggl( \begin{array}{c}
-1 \\
0
\end{array} \biggr),\ \biggl( \begin{array}{c}
0 \\
-1
\end{array} \biggr)$のいずれかであることを示せ.
\mon[(b)] $\biggl( \begin{array}{c}
p_n \\
q_n
\end{array} \biggr)=\biggl( \begin{array}{c}
1 \\
1
\end{array} \biggr)$となる確率を$X_n$,$\biggl( \begin{array}{c}
p_n \\
q_n
\end{array} \biggr)=\biggl( \begin{array}{c}
-1 \\
0
\end{array} \biggr)$となる確率を$Y_n$,$\biggl( \begin{array}{c}
p_n \\
q_n
\end{array} \biggr)=\biggl( \begin{array}{c}
0 \\
-1
\end{array} \biggr)$となる確率を$Z_n$とするとき,$X_{n+1},\ Y_{n+1},\ Z_{n+1}$をそれぞれ$Y_n$を用いて表せ.また,$X_n$を$n$を用いて表せ.
島根大学 国立 島根大学 2012年 第1問
次の問いに答えよ.

(1)$2$または$3$を,順序を考慮して合計$n$になるまで加える方法が何通りあるかを考える.たとえば,$n=5$のときは$2+3,\ 3+2$の$2$通りあり,$n=6$のときは$2+2+2,\ 3+3$の$2$通りある.$n=15$のときに何通りあるかを答えよ.
(2)硬貨を投げ,表が出れば$2$,裏が出れば$3$を加えるものとする.$0$からはじめて合計が$15$以上になるまで硬貨投げを繰り返すとき,合計が$15$になる確率を求めよ.
中央大学 私立 中央大学 2012年 第4問
以下の設問に答えよ.

(1)ゲーム$\mathrm{A}$を
\begin{itemize}
$5$枚の硬貨を同時に投げる.
表が出た硬貨が$3$枚以上ある場合は得点$1$,
それ以外の場合は得点$0$
\end{itemize}
とする.このゲーム$\mathrm{A}$を$3$回行うとき,合計得点が$2$以上になる確率を求めよ.
(2)ゲーム$\mathrm{B}$を
\begin{itemize}
$3$つのサイコロを同時に振る.
同じ目のサイコロが$2$つ以上ある場合は得点$1$,
それ以外の場合は得点$0$
\end{itemize}
とする.このゲーム$\mathrm{B}$を$3$回行うとき,合計得点が$2$以上になる確率を求めよ.
中央大学 私立 中央大学 2012年 第4問
$\mathrm{X}$と$\mathrm{Y}$の$2$人が,次のゲームを繰り返し行う.
\begin{itemize}
$\mathrm{X}$と$\mathrm{Y}$それぞれが,所持しているすべての硬貨を同時に投げる.
表が出た硬貨の枚数が多い方を勝ちとし,枚数が同じ場合は引き分けとする.
勝った方は,負けた方から硬貨を$1$枚もらう.また引き分けの場合は,硬貨のやりとりはしない.
\end{itemize}
ゲーム開始時に,$\mathrm{X}$は$3$枚,$\mathrm{Y}$は$2$枚の硬貨を所持している.このとき以下の設問に答えよ.

(1)$1$回目のゲームが終了したとき,$\mathrm{X}$の所持する硬貨が$4$枚になる確率を求めよ.
(2)$2$回目のゲームが終了したとき,$\mathrm{X}$の所持する硬貨が$5$枚になる確率を求めよ.
中央大学 私立 中央大学 2012年 第3問
下の図のように硬貨を一辺$n$の正三角形の形に並べたとき,そこに並んだ硬貨の総数を$n$番目の三角数といい,$t_n$で表す.このとき,以下の問いに答えよ.
(図は省略)

(1)$t_n$を$n$の式で表せ.
(2)$300$以下の自然数のうちに三角数はいくつあるか.
(3)$t_n$が$3$の倍数であるのは,$n$が$3$の倍数であるか,$n+1$が$3$の倍数であるかのいずれかのとき,またそのときに限ることを示せ.
(4)$300$以下の自然数のうちに$3$の倍数である三角数はいくつあるか.
(5)$300$以下の自然数のうちに$3$の倍数でもなく,三角数でもない数はいくつあるか.
昭和大学 私立 昭和大学 2012年 第5問
硬貨を投げて座標平面上の点を移動させるゲームをする.ゲームの規則は,硬貨を投げて表が出たら$x$軸の正の方向に$1$だけ進み,裏が出たら$y$軸の正の方向に$1$だけ進むものとする.点は原点から出発する.以下の各問に答えよ.

(1)点$(3,\ 3)$に到着する確率を求めよ.
(2)点$(1,\ 1)$を通って点$(3,\ 3)$に到着する確率を求めよ.
(3)点$(1,\ 1)$を通るが,点$(2,\ 2)$を通らずに点$(3,\ 3)$に到着する確率を求めよ.
東京理科大学 私立 東京理科大学 2012年 第1問
次の問いに答えよ.

(1)$1$枚の硬貨をくり返し投げるゲームを行う.このゲームを,表がちょうど$4$回出たところ,または,裏がちょうど$4$回出たところで終了することにする.ただし,硬貨を投げたとき,表が出る確率と裏が出る確率はいずれも$\displaystyle \frac{1}{2}$である.

(i) 硬貨を$k$回投げたところで終了する確率を$p_k$とすると,
\[ p_4=\frac{[ア]}{[イ]},\quad p_5=\frac{[ウ]}{[エ]},\quad p_7=\frac{[オ]}{[カ][キ]} \]
である.
(ii) このゲームが終了するまでに硬貨を投げる回数の期待値は
\[ \frac{[ク][ケ]}{[コ][サ]} \]
である.

(2)$0^\circ \leqq \theta \leqq 180^\circ$の$\theta$に対して,$x$に関する$2$次方程式
\[ x^2+(\sqrt{2} \sin 2\theta)x+2 \cos \theta=0 \]
を考える.

(i) この方程式が異なる$2$つの実数解をもつのは,
\[ [ア][イ]^\circ<\theta \leqq [ウ][エ][オ]^\circ \]
のときである.

以下,この方程式が異なる$2$つの実数解をもつ場合について考え,この$2$つの実数解を$\alpha,\ \beta$とする.

(ii) 無限等比級数
\[ 1+\left( \frac{1}{\alpha}+\frac{1}{\beta} \right)+\left( \frac{1}{\alpha}+\frac{1}{\beta} \right)^2+\cdots +\left( \frac{1}{\alpha}+\frac{1}{\beta} \right)^n+\cdots \]
が収束するのは,
\[ [カ][キ][ク]^\circ<\theta \leqq [ケ][コ][サ]^\circ \]
のときである.
(iii) 無限等比級数
\[ 1+\left( \frac{1}{\alpha}+\frac{1}{\beta} \right)+\left( \frac{1}{\alpha}+\frac{1}{\beta} \right)^2+\cdots +\left( \frac{1}{\alpha}+\frac{1}{\beta} \right)^n+\cdots \]
が収束して,その和が$2-\sqrt{2}$となるのは,
\[ \theta=[シ][ス][セ]^\circ \]
のときである.

(3)$\triangle \mathrm{OAB}$において,辺$\mathrm{AB}$を$2:1$の比に内分する点を$\mathrm{C}$($\mathrm{AC}:\mathrm{CB}=2:1$),線分$\mathrm{OC}$を$1:2$の比に内分する点を$\mathrm{D}$($\mathrm{OD}:\mathrm{DC}=1:2$)とする.辺$\mathrm{OA}$上に点$\mathrm{P}$を,辺$\mathrm{OB}$上に点$\mathrm{Q}$を,線分$\mathrm{PQ}$が点$\mathrm{D}$を通るようにとる.

(i) $\displaystyle \frac{\mathrm{OA}}{\mathrm{OP}}+2 \times \frac{\mathrm{OB}}{\mathrm{OQ}}=[ア]$である.


以下,$\mathrm{OA}=2$,$\mathrm{OB}=3$,$\angle \mathrm{AOB}=60^\circ$とする.


(ii) $\mathrm{OP}=1$のとき,$\triangle \mathrm{OPQ}$の面積は
\[ \frac{[イ]}{[ウ][エ]} \times \sqrt{[オ]} \]
である.
(iii) 線分$\mathrm{OP}$の長さと線分$\mathrm{OQ}$の長さの和$\mathrm{OP}+\mathrm{OQ}$がもっとも小さくなるように点$\mathrm{P}$,$\mathrm{Q}$をとるとき,
\[ \mathrm{OP}=\frac{[カ]+[キ] \sqrt{[ク]}}{[ケ]} \]
である.このとき,
\[ \mathrm{OP}+\mathrm{OQ}=\frac{[コ]+[サ] \sqrt{[シ]}}{[ス]} \]
である.
東京理科大学 私立 東京理科大学 2012年 第1問
次の文章中の$[ア]$から$[タ]$までに当てはまる$0$から$9$までの数を求めよ.

$1$個のサイコロを$1$回投げ,出た目の回数だけ$1$枚の硬貨を投げることにする.このとき,$xy$平面上において,動点$\mathrm{A}$は原点$(0,\ 0)$から出発し,硬貨を投げるごとに,表が出れば$x$軸方向に$1$移動し,裏が出れば$y$軸方向に$1$移動する.ただし,サイコロを投げたとき,どの目の出る確率も$\displaystyle \frac{1}{6}$で,硬貨を投げたとき,表,裏の出る確率はどちらも$\displaystyle \frac{1}{2}$であるとする.
サイコロの出た目の回数だけ硬貨を投げ終えたときの$\mathrm{A}$の位置を$(x,\ y)$とする.

(1)$(x,\ y)=(0,\ 6)$である確率は$\displaystyle \frac{[ア]}{[イ][ウ][エ]}$である.

(2)$x=y$である確率は$\displaystyle \frac{[オ][カ]}{[キ][ク]}$である.

(3)$y=0$である確率は$\displaystyle \frac{[ケ][コ]}{[サ][シ][ス]}$である.

(4)$x=1$である確率は$\displaystyle \frac{[セ]}{[ソ][タ]}$である.
大阪市立大学 公立 大阪市立大学 2012年 第3問
三角形ABCの頂点A,B,Cは反時計回りに並んでいるものとする.点Pはいずれかの頂点の位置にあり,1枚の硬貨を1回投げるごとに,表が出れば時計回りに隣の頂点へ,裏が出れば反時計回りに隣の頂点へ,移動するものとする.点Pは最初,頂点Aの位置にあったとする.硬貨を$n$回投げたとき,点Pが頂点Aの位置へ戻る確率を$a_n$で表す.次の問いに答えよ.

(1)$n \geqq 2$に対し$a_n$を$a_{n-1}$を用いて表せ.
(2)$a_n$を求めよ.
スポンサーリンク

「硬貨」とは・・・

 まだこのタグの説明は執筆されていません。