タグ「直角二等辺三角形」の検索結果

1ページ目:全30問中1問~10問を表示)
佐賀大学 国立 佐賀大学 2016年 第2問
空間に$3$点$\mathrm{A}(1,\ 2,\ 6)$,$\mathrm{B}(7,\ 0,\ 9)$,$\mathrm{C}(s,\ t,\ 0)$がある.ただし,$s,\ t$は実数とする.このとき,次の問に答えよ.

(1)内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$を$s$と$t$を用いて表せ.
(2)$|\overrightarrow{\mathrm{AB|}}=|\overrightarrow{\mathrm{AC|}}$となるとき,$s$と$t$の関係式を求めよ.
(3)$\triangle \mathrm{ABC}$が$\angle \mathrm{BAC}={90}^\circ$の直角二等辺三角形となるとき,$s$と$t$の値を求めよ.
岐阜大学 国立 岐阜大学 2016年 第5問
$\triangle \mathrm{OAB}$において,辺$\mathrm{OA}$を$1:3$に内分する点を$\mathrm{C}$,辺$\mathrm{OB}$を$1:2$に内分する点を$\mathrm{D}$,線分$\mathrm{AD}$の中点を$\mathrm{E}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とする.以下の問に答えよ.

(1)$\overrightarrow{\mathrm{CE}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)直線$\mathrm{CE}$と辺$\mathrm{AB}$の交点を$\mathrm{F}$とする.$\overrightarrow{\mathrm{CF}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)辺$\mathrm{AB}$を$7:1$に外分する点を$\mathrm{G}$とする.$\overrightarrow{\mathrm{EG}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(4)内積$\overrightarrow{\mathrm{CE}} \cdot \overrightarrow{\mathrm{EG}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(5)$\triangle \mathrm{OAB}$を$\mathrm{OA}=\mathrm{OB}$となる直角二等辺三角形とするとき,$\angle \mathrm{CEG}$の大きさを求めよ.
山梨大学 国立 山梨大学 2016年 第1問
次の問いに答えよ.

(1)$\angle \mathrm{A}={90}^\circ$の直角二等辺三角形$\mathrm{ABC}$において,$3$辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$上の点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$とする.線分$\mathrm{AQ}$,$\mathrm{BR}$,$\mathrm{CP}$は$1$点で交わり,$\mathrm{AP}:\mathrm{PB}=3:1$かつ$\angle \mathrm{ARB}={60}^\circ$とする.このとき,$\displaystyle \frac{\mathrm{BQ}}{\mathrm{QC}}$を求めよ.
(2)複素数$z$の方程式$z^4=-8-8 \sqrt{3}i$の解をすべて求めよ.
(3)初項$a_1=3$,公差$4$の等差数列$\{a_n\}$の一般項を求めよ.また,$a_1,\ a_2,\ \cdots,\ a_n$の$n$個の値からなるデータの平均値$m$および分散$s^2$を,$n$を用いた式で表せ.
広島工業大学 私立 広島工業大学 2016年 第6問
四角形$\mathrm{ABCD}$において,$\triangle \mathrm{ABC}$は$\angle \mathrm{C}={90}^\circ$の直角二等辺三角形,$\triangle \mathrm{ACD}$は正三角形である.$\mathrm{AC}=1$のとき,次の問いに答えよ.

(1)四角形$\mathrm{ABCD}$の面積を求めよ.
(2)$\triangle \mathrm{BCD}$の面積を求めよ.
(3)$\mathrm{BD}^2$を求めよ.
(4)$(3)$を用いて,$\displaystyle \cos {105}^\circ=\frac{\sqrt{2}-\sqrt{6}}{4}$を示せ.
福岡大学 私立 福岡大学 2016年 第3問
$a$を実数とする.$3$次方程式$\displaystyle x^3+ax+\frac{5}{2}=0$の$3$つの解を$\alpha,\ \beta,\ \gamma$とするとき,$\alpha^2+\beta^2+\gamma^2$の値を$a$を用いて表すと$[ ]$である.また,複素平面上の$3$点$\mathrm{A}(\alpha)$,$\mathrm{B}(\beta)$,$\mathrm{C}(\gamma)$に対し,$\triangle \mathrm{ABC}$が直角二等辺三角形であるとき,$a$の値を求めると,$a=[ ]$である.
藤田保健衛生大学 私立 藤田保健衛生大学 2016年 第1問
次の問いに答えよ.

(1)全体集合$U$の要素の個数が$50$,$U$の部分集合$A,\ B,\ C$の要素の個数がそれぞれ$33$,$36$,$37$である.$A \cap B \cap C$の要素の個数の最小値を求めよ.
(2)$70$より大きい$2$桁の素数の値すべてからなる$1$組のデータがある.ただし,同じ値は重複していない.このデータの標準偏差を求めよ.
(3)$(0.9)^n<0.01$を満たす最小の整数$n$を求めよ.ただし小数第$5$位を四捨五入したとき$\log_{10}3=0.4771$である.
(4)極方程式$r=2(\cos \theta+\sin \theta)$の表す曲線を直交座標$(x,\ y)$に関する方程式で表す.$x=1$に対する$y$をすべて求めよ.
(5)複素数平面上に点$\mathrm{A}$を直角の頂点とする直角二等辺三角形$\mathrm{ABC}$がある.$\mathrm{A}(2+i)$,$\mathrm{B}(4+4i)$のとき点$\mathrm{C}$を表す複素数を求めよ.
(6)$\displaystyle \lim_{x \to \infty} (\sqrt{3x^2+2x+1}+ax+b)=0$が成り立つように定数$a,\ b$の値を定めよ.
(7)$x>0$で定義される関数$\displaystyle f(x)=\frac{\log 2x}{x^2}$の最大値を求めよ.
(8)曲線$x=3(t-\sin t)$,$y=3(1-\cos t)$の$\displaystyle 0 \leqq t \leqq \frac{\pi}{2}$の部分の長さを求めよ.
香川大学 国立 香川大学 2015年 第1問
図のような一辺の長さが$1$の立方体$\mathrm{OABC}$-$\mathrm{DEFG}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とする.$\mathrm{M}$を辺$\mathrm{OC}$の中点,$\mathrm{R}$,$\mathrm{S}$をそれぞれ辺$\mathrm{AE}$,辺$\mathrm{GF}$上の点とする.$\mathrm{AR}=r$,$\mathrm{GS}=s$,$\angle \mathrm{RMS}=\theta$とおくとき,次の問に答えよ.
(図は省略)

(1)$\overrightarrow{\mathrm{MR}}$,$\overrightarrow{\mathrm{MS}}$を,それぞれ$r,\ s,\ \overrightarrow{a},\ \overrightarrow{c},\ \overrightarrow{d}$を用いて表せ.
(2)$\cos \theta$を$r,\ s$を用いて表せ.
(3)$\triangle \mathrm{MRS}$が$\angle \mathrm{RMS}={90}^\circ$の直角二等辺三角形のとき,$r$と$s$の値を求めよ.
(4)$\angle \mathrm{MRS}$はつねに鋭角であることを示せ.
香川大学 国立 香川大学 2015年 第1問
図のような一辺の長さが$1$の立方体$\mathrm{OABC}$-$\mathrm{DEFG}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とする.$\mathrm{M}$を辺$\mathrm{OC}$の中点,$\mathrm{R}$,$\mathrm{S}$をそれぞれ辺$\mathrm{AE}$,辺$\mathrm{GF}$上の点とする.$\mathrm{AR}=r$,$\mathrm{GS}=s$,$\angle \mathrm{RMS}=\theta$とおくとき,次の問に答えよ.
(図は省略)

(1)$\overrightarrow{\mathrm{MR}}$,$\overrightarrow{\mathrm{MS}}$を,それぞれ$r,\ s,\ \overrightarrow{a},\ \overrightarrow{c},\ \overrightarrow{d}$を用いて表せ.
(2)$\cos \theta$を$r,\ s$を用いて表せ.
(3)$\triangle \mathrm{MRS}$が$\angle \mathrm{RMS}={90}^\circ$の直角二等辺三角形のとき,$r$と$s$の値を求めよ.
(4)$\angle \mathrm{MRS}$はつねに鋭角であることを示せ.
香川大学 国立 香川大学 2015年 第1問
図のような一辺の長さが$1$の立方体$\mathrm{OABC}$-$\mathrm{DEFG}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とする.$\mathrm{M}$を辺$\mathrm{OC}$の中点,$\mathrm{R}$,$\mathrm{S}$をそれぞれ辺$\mathrm{AE}$,辺$\mathrm{GF}$上の点とする.$\mathrm{AR}=r$,$\mathrm{GS}=s$,$\angle \mathrm{RMS}=\theta$とおくとき,次の問に答えよ.
(図は省略)

(1)$\overrightarrow{\mathrm{MR}}$,$\overrightarrow{\mathrm{MS}}$を,それぞれ$r,\ s,\ \overrightarrow{a},\ \overrightarrow{c},\ \overrightarrow{d}$を用いて表せ.
(2)$\cos \theta$を$r,\ s$を用いて表せ.
(3)$\triangle \mathrm{MRS}$が$\angle \mathrm{RMS}={90}^\circ$の直角二等辺三角形のとき,$r$と$s$の値を求めよ.
(4)$\angle \mathrm{MRS}$はつねに鋭角であることを示せ.
香川大学 国立 香川大学 2015年 第1問
図のような一辺の長さが$1$の立方体$\mathrm{OABC}$-$\mathrm{DEFG}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とする.$\mathrm{M}$を辺$\mathrm{OC}$の中点,$\mathrm{R}$,$\mathrm{S}$をそれぞれ辺$\mathrm{AE}$,辺$\mathrm{GF}$上の点とする.$\mathrm{AR}=r$,$\mathrm{GS}=s$,$\angle \mathrm{RMS}=\theta$とおくとき,次の問に答えよ.
(図は省略)

(1)$\overrightarrow{\mathrm{MR}}$,$\overrightarrow{\mathrm{MS}}$を,それぞれ$r,\ s,\ \overrightarrow{a},\ \overrightarrow{c},\ \overrightarrow{d}$を用いて表せ.
(2)$\cos \theta$を$r,\ s$を用いて表せ.
(3)$\triangle \mathrm{MRS}$が$\angle \mathrm{RMS}={90}^\circ$の直角二等辺三角形のとき,$r$と$s$の値を求めよ.
(4)$\angle \mathrm{MRS}$はつねに鋭角であることを示せ.
スポンサーリンク

「直角二等辺三角形」とは・・・

 まだこのタグの説明は執筆されていません。