タグ「直角三角形」の検索結果

1ページ目:全77問中1問~10問を表示)
岡山大学 国立 岡山大学 2016年 第3問
ひとつのサイコロを$3$回振り,出た目を順に$u,\ v,\ w$とする.そして座標平面上の$2$点$\mathrm{A}(a_1,\ a_2)$,$\mathrm{B}(b_1,\ b_2)$を
\[ a_1=u,\quad a_2=0,\quad b_1=v \cos \frac{(w+2)\pi}{12},\quad b_2=v \sin \frac{(w+2)\pi}{12} \]
で定める.このとき以下の問いに答えよ.ただし$\mathrm{O}$は原点$(0,\ 0)$とする.

(1)$\triangle \mathrm{OAB}$が正三角形となる確率を求めよ.
(2)$\triangle \mathrm{OAB}$が大きさ$\displaystyle \frac{\pi}{3}$の内角をもつ直角三角形となる確率を求めよ.
鳴門教育大学 国立 鳴門教育大学 2016年 第2問
$\triangle \mathrm{ABC}$において,$\mathrm{AB}=6$,$\mathrm{BC}=k$,$\mathrm{CA}=2k$とするとき,次の問いに答えなさい.

(1)$\triangle \mathrm{ABC}$が直角三角形となるような$k$とそのときの$\sin C$の値をすべて求めなさい.
(2)$\displaystyle \tan C=\frac{3}{4}$となるときの,$\triangle \mathrm{ABC}$の面積を求めなさい.
東北大学 国立 東北大学 2016年 第3問
サイコロを$3$回振って出た目の数をそれぞれ順に$a,\ b,\ c$とする.以下の問いに答えよ.

(1)$a,\ b,\ c$がある直角三角形の$3$辺の長さとなる確率を求めよ.
(2)$a,\ b,\ c$がある鈍角三角形の$3$辺の長さとなる確率を求めよ.
山形大学 国立 山形大学 2016年 第4問
複素数平面上の$3$点$\mathrm{A}(\alpha)$,$\mathrm{W}(w)$,$\mathrm{Z}(z)$は原点$\mathrm{O}(0)$と異なり,
\[ \alpha=-\frac{1}{2}+\frac{\sqrt{3}}{2}i,\quad w=(1+\alpha)z+1+\overline{\alpha} \]
とする.ただし,$\overline{\alpha}$は$\alpha$の共役な複素数とする.$2$直線$\mathrm{OW}$,$\mathrm{OZ}$が垂直であるとき,次の問に答えよ.

(1)$(1+\alpha)\beta+1+\overline{\alpha}=0$を満たす複素数$\beta$を求めよ.
(2)$|z-\alpha|$の値を求めよ.
(3)$\triangle \mathrm{OAZ}$が直角三角形になるときの複素数$z$を求めよ.
慶應義塾大学 私立 慶應義塾大学 2016年 第1問
次の問いに答えよ.

(1)整式$P(x)$は実数を係数にもつ$x$の$3$次式であり,$x^3$の係数は$1$である.$P(x)$を$x-7$で割ると$8$余り,$x-9$で割ると$12$余る.方程式$P(x)=0$は$a+bi$を解に持つ.$a,\ b$は$1$桁の自然数であり,$i$は虚数単位とする.
ただし$a,\ b$の組み合わせは,$2a+b$が連続する$2$つの整数の積の値と等しくなるもののうち,$a-b$が最大となるものとする.このとき,

(i) 整式$P(x)$を$(x-7)(x-9)$で割ると,余りは$[$1$]x-[$2$]$である.
(ii) $a=[$3$]$,$b=[$4$]$であり,方程式$P(x)=0$の実数解は$[$5$]$である.

(2)$xy$平面上に曲線$C_1:y=-x^2-x+8$がある.$C_1$上の動点$\mathrm{A}$を点$(1,\ 2)$に関して対称移動した点$\mathrm{B}$の軌跡を$C_2$とする.
$C_1$と$C_2$の$2$つの交点$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$\alpha,\ \beta (\alpha<\beta)$とし,また,$C_1,\ C_2$と直線$x=k$との交点をそれぞれ$\mathrm{R}$,$\mathrm{S}$とする.ただし,$k$は$\alpha<k<\beta$を満たす実数とする.このとき,

(i) $C_2$の方程式は$y=x^2-[$6$]x+[$7$]$である.

(ii) 三角形$\mathrm{QRS}$の面積は$\displaystyle k=\frac{[$8$]}{[$9$]}$で最大となる.


(3)$xy$平面上に,原点$\mathrm{O}$を中心とする単位円$C$と,$y$軸の正の部分を始線として点$\mathrm{O}$を中心に回転する$2$つの動径$L_1,\ L_2$がある.円$C$と$L_1,\ L_2$との交点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.動径$L_1,\ L_2$の表す角をそれぞれ$\theta_1,\ \theta_2$とおき,$\theta_1=2\pi t,\ \theta_2=-\pi t$とする.ただし$t$は,$t \geqq 0$を満たす実数である.このとき,

(i) 点$\mathrm{P}$と点$\mathrm{Q}$が一致する$t$のうち,$t=0$を除く最小の$t$の値は$\displaystyle \frac{[$10$]}{[$11$]}$である.

(ii) 点$\mathrm{P}$の$y$座標と点$\mathrm{Q}$の$y$座標の和の最小値は$\displaystyle \frac{[$12$][$13$]}{[$14$]}$である.


(4)直角三角形$\mathrm{AOB}$($\angle \mathrm{AOB}={90}^\circ$)に内接する半径$r$の円の中心を$\mathrm{P}$とする.辺$\mathrm{AB}$と円の接点を$\mathrm{Q}$とし,線分$\mathrm{AQ}$の長さを$a$,線分$\mathrm{BQ}$の長さを$b$とする.三角形$\mathrm{AOB}$に対して,自然数$l,\ m,\ n (n<m<l)$は,$l \overrightarrow{\mathrm{OP}}+m \overrightarrow{\mathrm{AP}}+n \overrightarrow{\mathrm{BP}}=\overrightarrow{\mathrm{0}}$を満たす.このとき,

(i) 三角形$\mathrm{AOB}$の$3$辺の長さの合計は$[$15$]a+[$16$]b+[$17$]r$である.

(ii) $l=17$のとき,$m=[$18$][$19$]$,$n=[$20$]$であり,$\displaystyle \frac{a}{b}=\frac{[$21$]}{[$22$][$23$]}$である.
早稲田大学 私立 早稲田大学 2016年 第2問
$2$つの複素数$w,\ z (z \neq 0)$の間に
\[ w=z-\frac{7}{4z} \]
という関係がある.ここで$w=x+yi$($x,\ y$は実数,$i$は虚数単位)と表すとき,以下の問に答えよ.

(1)複素数平面上で$z$が原点$\mathrm{O}$を中心として半径$\displaystyle \frac{7}{2}$の円周上を動くとする.このとき$w$が描く曲線$C$を座標平面上の$x$と$y$の方程式で表示せよ.
(2)$(1)$で得られた曲線$C$上の点$\mathrm{P}(s,\ t) (s>0,\ t>0)$における曲線$C$の接線が$x$軸と交わる点を$\mathrm{Q}$,$y$軸と交わる点を$\mathrm{R}$とする.このとき原点$\mathrm{O}$と$\mathrm{Q}$と$\mathrm{R}$とを頂点とする直角三角形$\triangle \mathrm{OQR}$を$y$軸のまわりに$1$回転してできる円錐の体積の最小値を求めよ.
広島大学 国立 広島大学 2015年 第1問
$a,\ b,\ c$を実数とし,$a<1$とする.座標平面上の$2$曲線
\[ C_1:y=x^2-x,\quad C_2:y=x^3+bx^2+cx-a \]
を考える.$C_1$と$C_2$は,点$\mathrm{P}(1,\ 0)$と,それとは異なる点$\mathrm{Q}$を通る.また,点$\mathrm{P}$における$C_1$と$C_2$の接線の傾きは等しいものとする.点$\mathrm{P}$における$C_1$の接線を$\ell_1$,点$\mathrm{Q}$における$C_1$の接線を$\ell_2$,点$\mathrm{Q}$における$C_2$の接線を$\ell_3$とする.次の問いに答えよ.

(1)$b,\ c$および点$\mathrm{Q}$の座標を$a$を用いて表せ.
(2)$\ell_1,\ \ell_2,\ \ell_3$が三角形をつくらないような$a$の値を求めよ.
(3)$\ell_1,\ \ell_2,\ \ell_3$が直角三角形をつくるような$a$の値の個数を求めよ.
小樽商科大学 国立 小樽商科大学 2015年 第1問
次の$[ ]$の中を適当に補え.

(1)$n^2-92n+2015 \leqq 0$を満たす整数$n$は全部で$[$(\mathrm{a])$}$個である.
(2)方程式$\log_x (x^3+2)=\log_x x(2x+1)$を解くと$x=[$(\mathrm{b])$}$である.
(3)下図の直角三角形$\mathrm{ACD}$において,$\angle \mathrm{BCD}={90}^\circ$,$\angle \mathrm{DAC}=\alpha$,$\angle \mathrm{DBC}=\beta$,$\mathrm{AB}=x$,$\mathrm{CD}=h$とするとき,$h$を$x,\ \alpha,\ \beta$で表すと$h=[$(\mathrm{c])$}$である.
(図は省略)
静岡大学 国立 静岡大学 2015年 第4問
$i$を虚数単位,$r$を$1$より大きい実数とし,$\displaystyle w=r \left( \cos \frac{\pi}{24}+i \sin \frac{\pi}{24} \right)$とおく.また,数列$\{z_n\}$を次の式で定める.
\[ z_1=w,\quad z_{n+1}=z_nw^{n+2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,次の問いに答えよ.

(1)$z_2$を$r$を用いて表せ.
(2)$z_n$の偏角の$1$つを$n$を用いて表せ.
(3)複素数平面で原点を$\mathrm{O}$,$z_n$で表される点を$\mathrm{P}_n$とする.$7 \leqq n \leqq 48$のとき,$\triangle \mathrm{P}_n \mathrm{OP}_{n+1}$が$\displaystyle \angle \mathrm{O}=\frac{\pi}{3}$を満たす直角三角形となるような$n$と$r$をそれぞれ求めよ.また,そのときの$z_n$の偏角$\theta$を$0 \leqq \theta<2\pi$の範囲で求めよ.
静岡大学 国立 静岡大学 2015年 第4問
$i$を虚数単位,$r$を$1$より大きい実数とし,$\displaystyle w=r \left( \cos \frac{\pi}{24}+i \sin \frac{\pi}{24} \right)$とおく.また,数列$\{z_n\}$を次の式で定める.
\[ z_1=w,\quad z_{n+1}=z_nw^{n+2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,次の問いに答えよ.

(1)$z_2$を$r$を用いて表せ.
(2)$z_n$の偏角の$1$つを$n$を用いて表せ.
(3)複素数平面で原点を$\mathrm{O}$,$z_n$で表される点を$\mathrm{P}_n$とする.$7 \leqq n \leqq 48$のとき,$\triangle \mathrm{P}_n \mathrm{OP}_{n+1}$が$\displaystyle \angle \mathrm{O}=\frac{\pi}{3}$を満たす直角三角形となるような$n$と$r$をそれぞれ求めよ.また,そのときの$z_n$の偏角$\theta$を$0 \leqq \theta<2\pi$の範囲で求めよ.
スポンサーリンク

「直角三角形」とは・・・

 まだこのタグの説明は執筆されていません。