タグ「直角」の検索結果

1ページ目:全44問中1問~10問を表示)
名古屋大学 国立 名古屋大学 2016年 第1問
曲線$y=x^2$上に$2$点$\mathrm{A}(-1,\ 1)$,$\mathrm{B}(b,\ b^2)$をとる.ただし$b>-1$とする.このとき,次の条件を満たす$b$の範囲を求めよ.


\mon[条件:] $y=x^2$上の点$\mathrm{T}(t,\ t^2) (-1<t<b)$で,$\angle \mathrm{ATB}$が直角になるものが存在する.
名古屋大学 国立 名古屋大学 2016年 第1問
曲線$y=x^2$上に$2$点$\mathrm{A}(-2,\ 4)$,$\mathrm{B}(b,\ b^2)$をとる.ただし$b>-2$とする.このとき,次の条件を満たす$b$の範囲を求めよ.


\mon[条件:] $y=x^2$上の点$\mathrm{T}(t,\ t^2) (-2<t<b)$で,$\angle \mathrm{ATB}$が直角になるものが存在する.
長崎大学 国立 長崎大学 2016年 第1問
以下の問いに答えよ.

(1)放物線$y=x^2-x$の頂点を$\mathrm{P}$とする.点$\mathrm{Q}$はこの放物線上の点であり,原点$\mathrm{O}(0,\ 0)$とも点$\mathrm{P}$とも異なるとする.$\angle \mathrm{OPQ}$が直角であるとき,点$\mathrm{Q}$の座標を求めよ.
(2)関数$f(x)$は以下の条件(イ),(ロ),(ハ)を満たす.そのような正の数$a$の値と$f(x)$を求めよ.

(イ)$f^\prime(x)=x^2+ax$
(ロ)$f(0)=-1$
(ハ)$f(x)$の極大値と極小値の差が$\displaystyle \frac{4}{81}$

(3)方程式$2(\log_2 x)^2-7 |\log_2 x|-4=0$を解け.
(4)$0 \leqq x \leqq 2\pi$のとき,不等式$\sin 3x+\sin 2x<\sin x$を解け.
愛媛大学 国立 愛媛大学 2016年 第5問
正方形$\mathrm{ABCD}$の内部の点$\mathrm{P}$に対して$\angle \mathrm{CPD}$が直角であるとき,$\displaystyle \frac{\mathrm{BP}}{\mathrm{AP}}$の最大値を求めよ.
藤田保健衛生大学 私立 藤田保健衛生大学 2016年 第1問
次の問いに答えよ.

(1)全体集合$U$の要素の個数が$50$,$U$の部分集合$A,\ B,\ C$の要素の個数がそれぞれ$33$,$36$,$37$である.$A \cap B \cap C$の要素の個数の最小値を求めよ.
(2)$70$より大きい$2$桁の素数の値すべてからなる$1$組のデータがある.ただし,同じ値は重複していない.このデータの標準偏差を求めよ.
(3)$(0.9)^n<0.01$を満たす最小の整数$n$を求めよ.ただし小数第$5$位を四捨五入したとき$\log_{10}3=0.4771$である.
(4)極方程式$r=2(\cos \theta+\sin \theta)$の表す曲線を直交座標$(x,\ y)$に関する方程式で表す.$x=1$に対する$y$をすべて求めよ.
(5)複素数平面上に点$\mathrm{A}$を直角の頂点とする直角二等辺三角形$\mathrm{ABC}$がある.$\mathrm{A}(2+i)$,$\mathrm{B}(4+4i)$のとき点$\mathrm{C}$を表す複素数を求めよ.
(6)$\displaystyle \lim_{x \to \infty} (\sqrt{3x^2+2x+1}+ax+b)=0$が成り立つように定数$a,\ b$の値を定めよ.
(7)$x>0$で定義される関数$\displaystyle f(x)=\frac{\log 2x}{x^2}$の最大値を求めよ.
(8)曲線$x=3(t-\sin t)$,$y=3(1-\cos t)$の$\displaystyle 0 \leqq t \leqq \frac{\pi}{2}$の部分の長さを求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2015年 第2問
次の問いに答えよ.

(1)正$6$角形の$6$つの頂点を$1,\ 2,\ 3,\ 4,\ 5,\ 6$とする.サイコロを$3$回振って出た目を順に$i,\ j,\ k$とする.頂点$i,\ j,\ k$が$3$角形をなす確率,直角$3$角形をなす確率,鋭角$3$角形をなす確率,鈍角$3$角形をなす確率をそれぞれ求めよ.
(2)正$n$角形の$n$個の頂点を$1,\ 2,\ \cdots,\ n$とする.番号$1,\ 2,\ \cdots,\ n$が等確率で現れるくじを引いて戻すことを$3$回繰り返し,出た番号を順に$i,\ j,\ k$とする.頂点$i,\ j,\ k$が直角$3$角形をなす確率,鋭角$3$角形をなす確率をそれぞれ求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2015年 第2問
次の問いに答えよ.

(1)正$6$角形の$6$つの頂点を$1,\ 2,\ 3,\ 4,\ 5,\ 6$とする.サイコロを$3$回振って出た目を順に$i,\ j,\ k$とする.頂点$i,\ j,\ k$が$3$角形をなす確率,直角$3$角形をなす確率,鋭角$3$角形をなす確率,鈍角$3$角形をなす確率をそれぞれ求めよ.
(2)正$n$角形の$n$個の頂点を$1,\ 2,\ \cdots,\ n$とする.番号$1,\ 2,\ \cdots,\ n$が等確率で現れるくじを引いて戻すことを$3$回繰り返し,出た番号を順に$i,\ j,\ k$とする.頂点$i,\ j,\ k$が直角$3$角形をなす確率,鋭角$3$角形をなす確率をそれぞれ求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2015年 第2問
次の問いに答えよ.

(1)正$6$角形の$6$つの頂点を$1,\ 2,\ 3,\ 4,\ 5,\ 6$とする.サイコロを$3$回振って出た目を順に$i,\ j,\ k$とする.頂点$i,\ j,\ k$が$3$角形をなす確率,直角$3$角形をなす確率をそれぞれ求めよ.
(2)正$n$角形の$n$個の頂点を$1,\ 2,\ \cdots,\ n$とする.番号$1,\ 2,\ \cdots,\ n$が等確率で現れるくじを引いて戻すことを$3$回繰り返し,出た番号を順に$i,\ j,\ k$とする.頂点$i,\ j,\ k$が直角$3$角形をなす確率を求めよ.
東京理科大学 私立 東京理科大学 2015年 第2問
原点を$\mathrm{O}$とする座標空間内に$2$点$\mathrm{A}(3,\ -2,\ 1)$,$\mathrm{B}(1,\ 2,\ 5)$を定め,$t$を実数として,$z$軸上を動く点$\mathrm{P}(0,\ 0,\ t)$をとる.

(1)線分$\mathrm{AB}$の長さは$[ア]$である.
(2)線分$\mathrm{AP}$の長さと線分$\mathrm{BP}$の長さが等しくなるのは$t=[イ]$のときである.
(3)$\angle \mathrm{APB}$が直角となるのは$t=[ウ] \pm \sqrt{[エ]}$のときである.

(4)$\triangle \mathrm{ABP}$の面積が最小となるのは$\displaystyle t=\frac{[オ][カ]}{[キ]}$のときである.
福岡大学 私立 福岡大学 2015年 第8問
単位円周上の$2n$個の点$\displaystyle \mathrm{P}_k \left( \cos \frac{k}{n}\pi,\ \sin \frac{k}{n}\pi \right) (k=0,\ 1,\ 2,\ \cdots,\ 2n-1)$を頂点とする正$2n$角形がある.この$2n$個の点$\mathrm{P}_0,\ \mathrm{P}_1,\ \cdots,\ \mathrm{P}_{2n-1}$から$4$点を選び,順に結んで$4$角形を作るとき,$4$つの角がすべて直角である$4$角形は$[ ]$通りある.また,$4$つの角がどれも直角ではない$4$角形は$[ ]$通りある.ただし,$n \geqq 3$である.
スポンサーリンク

「直角」とは・・・

 まだこのタグの説明は執筆されていません。