タグ「直線」の検索結果

84ページ目:全2462問中831問~840問を表示)
島根大学 国立 島根大学 2014年 第2問
$\displaystyle f(x)=\frac{8x}{\sqrt{x^2+1}}$とするとき,次の問いに答えよ.

(1)関数$y=f(x)$の凹凸と漸近線を調べて,そのグラフの概形をかけ.
(2)$k$を正の定数とする.関数$y=f(x)$のグラフと直線$y=x+k$がちょうど$2$個の共有点をもつとき,$k$の値を求めよ.
(3)$k$を$(2)$で求めた定数とする.このとき,$x \geqq 0$の範囲で,関数$y=f(x)$のグラフと直線$y=x+k$および$y$軸で囲まれた図形の面積$S$を求めよ.
島根大学 国立 島根大学 2014年 第2問
$\displaystyle f(x)=\frac{8x}{\sqrt{x^2+1}}$とするとき,次の問いに答えよ.

(1)関数$y=f(x)$の凹凸と漸近線を調べて,そのグラフの概形をかけ.
(2)$k$を正の定数とする.関数$y=f(x)$のグラフと直線$y=x+k$がちょうど$2$個の共有点をもつとき,$k$の値を求めよ.
(3)$k$を$(2)$で求めた定数とする.このとき,$x \geqq 0$の範囲で,関数$y=f(x)$のグラフと直線$y=x+k$および$y$軸で囲まれた図形の面積$S$を求めよ.
島根大学 国立 島根大学 2014年 第2問
$a,\ b$は$a<b$をみたす実数とする.放物線$C:y=x^2$上の$2$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2)$を考える.このとき,次の問いに答えよ.

(1)直線$\mathrm{AB}$の方程式を$a$と$b$を用いて表せ.
(2)放物線$C$と直線$\mathrm{AB}$で囲まれた図形の面積$S$を$a$と$b$を用いて表せ.
(3)$a<t<b$の範囲で点$\mathrm{P}(t,\ t^2)$が動くとき,放物線$C$と直線$\mathrm{AP}$で囲まれた図形の面積を$S_1(t)$,放物線$C$と$2$直線$\mathrm{AB}$,$\mathrm{AP}$で囲まれた図形の面積を$S_2(t)$とする.このとき,等式$S_2(t)=7S_1(t)$をみたす$t$を$a$と$b$を用いて表せ.
島根大学 国立 島根大学 2014年 第2問
$a,\ b$は$a<b$をみたす実数とする.放物線$C:y=x^2$上の$2$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2)$を考える.このとき,次の問いに答えよ.

(1)直線$\mathrm{AB}$の方程式を$a$と$b$を用いて表せ.
(2)放物線$C$と直線$\mathrm{AB}$で囲まれた図形の面積$S$を$a$と$b$を用いて表せ.
(3)$a<t<b$の範囲で点$\mathrm{P}(t,\ t^2)$が動くとき,放物線$C$と直線$\mathrm{AP}$で囲まれた図形の面積を$S_1(t)$,放物線$C$と$2$直線$\mathrm{AB}$,$\mathrm{AP}$で囲まれた図形の面積を$S_2(t)$とする.このとき,等式$S_2(t)=7S_1(t)$をみたす$t$を$a$と$b$を用いて表せ.
島根大学 国立 島根大学 2014年 第3問
点$(0,\ 5)$を通る直線$\ell$と楕円$\displaystyle C:\frac{x^2}{4}+\frac{y^2}{9}=1$を考える.このとき,次の問いに答えよ.

(1)楕円$C$と共有点をもつ直線$\ell$の方程式をすべて求めよ.
(2)楕円$C$と直線$\ell$が接するとき,その接点の座標を求めよ.
(3)楕円$C$と直線$\ell$が第一象限で接するとき,$C$と$\ell$および$y$軸で囲まれた図形を$y$軸のまわりに$1$回転させてできる立体の体積$V$を求めよ.
山形大学 国立 山形大学 2014年 第2問
数直線上に点$\mathrm{P}$があり,最初は原点に位置している.点$\mathrm{P}$を次の試行にしたがって数直線上を動かす.

$(ⅰ)$ 赤い玉が$2$個,白い玉が$1$個入った袋から玉を$1$個取り出す.
$(ⅱ)$ 取り出した玉の色が赤ならば,点$\mathrm{P}$を正の向きに$1$だけ動かす.
$(ⅲ)$ 取り出した玉の色が白ならば,点$\mathrm{P}$を負の向きに$1$だけ動かす.
$\tokeishi$ 取り出した玉は袋に戻す.

このとき,次の問に答えよ.

(1)この試行を$2$回くりかえしたとき,点$\mathrm{P}$の座標の期待値を求めよ.
(2)試行の回数が$4$回以内で,点$\mathrm{P}$の座標が$2$になる確率を求めよ.
(3)試行を$n$回行っても点$\mathrm{P}$の座標が$1$度も$-2$にも$2$にもならない確率を求めよ.
(4)試行を$n$回行うとき,点$\mathrm{P}$の座標が$1$度も$-2$にならず,ちょうど$n$回目に初めて$2$になる確率を求めよ.
山形大学 国立 山形大学 2014年 第3問
三角形$\mathrm{ABC}$の各辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$を$1:2$に内分する点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$とする.$\mathrm{AQ}$と$\mathrm{CP}$の交点を$\mathrm{S}$,$\mathrm{BR}$と$\mathrm{AQ}$の交点を$\mathrm{T}$,$\mathrm{CP}$と$\mathrm{BR}$の交点を$\mathrm{U}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とするとき,次の問に答えよ.
(図は省略)

(1)$\overrightarrow{\mathrm{AQ}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)点$\mathrm{Q}$を通り辺$\mathrm{AC}$と平行な直線と,$\mathrm{BR}$の交点を$\mathrm{V}$とするとき,$\overrightarrow{\mathrm{VQ}}$を$\overrightarrow{c}$を用いて表せ.
(3)$\overrightarrow{\mathrm{AT}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(4)$\overrightarrow{\mathrm{AS}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(5)$|\overrightarrow{b}|=1$,$|\overrightarrow{c}|=\sqrt{3}$,$\angle \mathrm{BAC}={90}^\circ$であるとき,$|\overrightarrow{\mathrm{ST}}|$,$|\overrightarrow{\mathrm{SU}}|$,$\angle \mathrm{TSU}$および三角形$\mathrm{STU}$の面積を求めよ.
山形大学 国立 山形大学 2014年 第1問
座標平面上の点$(-2,\ 1)$を$\mathrm{A}$,点$\displaystyle \left( a,\ \frac{1}{4}a^2 \right)$を$\mathrm{B}$とする.ただし,$0<a<2$とする.また,$\displaystyle y=\frac{1}{4}x^2$で表される放物線を$C$とする.このとき,次の問に答えよ.

(1)放物線$C$と線分$\mathrm{AB}$で囲まれる部分の面積$S$を$a$の式で表せ.
(2)直線$\mathrm{AB}$が直線$x=2$と交わる点を$\mathrm{D}$とする.放物線$C$と線分$\mathrm{BD}$および直線$x=2$で囲まれる部分の面積$T$を$a$の式で表せ.
(3)次の条件によって定められる数列$\{p_n\},\ \{q_n\}$の一般項を求めよ.

(i) $p_1=1,\ p_n>0,$
(ii) $\displaystyle q_n=\frac{1}{4}{p_n}^2,$
(iii) $p_n-p_{n+1}=2 \sqrt{q_nq_{n+1}}$

(4)$a=p_n$のとき,$(1)$と$(2)$で求めた$S$と$T$に対し,$T>S$となる最小の$n$を求めよ.
茨城大学 国立 茨城大学 2014年 第3問
放物線$y=x^2$を$C$として,$C$上に点$\mathrm{A}(-1,\ 1)$をとる.正の実数$a$に対して,点$\mathrm{B}(a,\ a^2)$における$C$の接線を$\ell_1$とし,$2$点$\mathrm{A}$,$\mathrm{B}$を通る直線を$\ell_2$とする.また,$C$と$\ell_1$および$x$軸とで囲まれた図形の面積を$S_1$とし,$C$と$\ell_2$で囲まれた図形の$x \geqq 0$の部分の面積を$S_2$とする.このとき,次の各問に答えよ.

(1)接線$\ell_1$の方程式を求めよ.
(2)$\displaystyle 2<\frac{S_2}{S_1}<2.01$を満たすための$a$の条件を求めよ.
宇都宮大学 国立 宇都宮大学 2014年 第3問
三角形$\mathrm{OAB}$において,辺$\mathrm{OA}$を$1:2$に内分する点を$\mathrm{C}$,辺$\mathrm{OB}$を$3:1$に内分する点を$\mathrm{D}$,$\mathrm{AD}$と$\mathrm{BC}$の交点を$\mathrm{P}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,次の問いに答えよ.

(1)$\mathrm{AP}:\mathrm{PD}=t:1-t (0<t<1)$とおくとき,$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a}$と$\overrightarrow{b}$と$t$を用いて表せ.
(2)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表せ.
(3)直線$\mathrm{OP}$と辺$\mathrm{AB}$との交点を$\mathrm{E}$とするとき,$\mathrm{AE}:\mathrm{EB}$を求めよ.
(4)$\angle \mathrm{AOB}={90}^\circ$,$\overrightarrow{\mathrm{OP}} \perp \overrightarrow{\mathrm{AB}}$であるとき,$\mathrm{OA}:\mathrm{OB}:\mathrm{AB}$を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。