タグ「直線」の検索結果

83ページ目:全2462問中821問~830問を表示)
秋田大学 国立 秋田大学 2014年 第3問
原点$\mathrm{O}$を中心とする半径$1$の円$C$上の点を$\mathrm{P}$とし,線分$\mathrm{OP}$と$x$軸の正の向きとのなす角を$\theta$とする.ただし,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.また,$C$上の点$\mathrm{Q}$を,線分$\mathrm{OQ}$と$x$軸の正の向きとのなす角が$\displaystyle \frac{\theta}{2}$となる点とする.このとき,次の問いに答えよ.

(1)直線$\mathrm{OQ}$と直線$x=1$との交点を$(1,\ t)$とするとき,$\mathrm{P}$の座標を$t$を用いて表せ.
(2)$\mathrm{P}$から$x$軸におろした垂線の交点を$\mathrm{H}$とする.$\triangle \mathrm{OPH}$の三辺の長さの和を$\theta$で表す関数を$r(\theta)$とするとき,関数$\displaystyle y=\frac{1}{r(\theta)}$のグラフをかけ.ただし,横軸に$\theta$,縦軸に$y$をとるものとする.
(3)定積分$\displaystyle \int_0^{\frac{\pi}{2}} \frac{1}{r(\theta)} \, d\theta$を求めよ.
福井大学 国立 福井大学 2014年 第4問
$f(x)=3 \sin x$,$g(x)=x(2+\cos x)$とするとき,以下の問いに答えよ.

(1)$0<x<\pi$のとき,$0<f(x)<g(x)$が成り立つことを証明せよ.
(2)$0 \leqq x \leqq \pi$の範囲で,$2$つの曲線$y=f(x)$,$y=g(x)$と直線$x=\pi$によって囲まれた図形の面積を求めよ.
山形大学 国立 山形大学 2014年 第3問
関数$f(x)$を$\displaystyle f(x)=\int_0^{\frac{\pi}{2}} |x-2t| \sin t \, dt$で定める($0 \leqq x \leqq \pi$).次の問に答えよ.

(1)次の不定積分を求めよ.ただし,$a>0$とする.
\[ \int t \sin at \, dt,\quad \int \sin^2 \frac{t}{2} \, dt \]
(2)$f(x)$の最小値を求め,そのときの$x$の値を求めよ.
(3)曲線$y=f(x)-f(0)$と$x$軸および直線$x=\pi$で囲まれた図形を$x$軸のまわりに回転して得られる回転体の体積$V$を求めよ.
和歌山大学 国立 和歌山大学 2014年 第4問
箱の中に,$1$から$4$までの整数が$1$つずつ重複せずに書かれた$4$枚のカードが入っている.この箱から$2$枚のカードを同時に取り出し,書かれた整数のうち,小さい方を$a$,大きい方を$b$とする.また,放物線$C:y=x^2$上の点$(a,\ a^2)$における接線を$\ell$とし,$\ell$に平行で点$(b,\ b^2)$を通る直線を$m$とする.さらに,放物線$C$と直線$m$で囲まれた部分の面積を$S$とする.このとき,次の問いに答えよ.

(1)直線$m$の方程式を$a,\ b$を用いて表せ.
(2)$S$を$a,\ b$を用いて表せ.
(3)$S$の期待値を求めよ.
秋田大学 国立 秋田大学 2014年 第3問
原点$\mathrm{O}$を中心とする半径$1$の円$C$上の点を$\mathrm{P}$とし,線分$\mathrm{OP}$と$x$軸の正の向きとのなす角を$\theta$とする.ただし,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.また,$C$上の点$\mathrm{Q}$を,線分$\mathrm{OQ}$と$x$軸の正の向きとのなす角が$\displaystyle \frac{\theta}{2}$となる点とする.このとき,次の問いに答えよ.

(1)直線$\mathrm{OQ}$と直線$x=1$との交点を$(1,\ t)$とするとき,$\mathrm{P}$の座標を$t$を用いて表せ.
(2)$\mathrm{P}$から$x$軸におろした垂線の交点を$\mathrm{H}$とする.$\triangle \mathrm{OPH}$の三辺の長さの和を$\theta$で表す関数を$r(\theta)$とするとき,関数$\displaystyle y=\frac{1}{r(\theta)}$のグラフをかけ.ただし,横軸に$\theta$,縦軸に$y$をとるものとする.
(3)定積分$\displaystyle \int_0^{\frac{\pi}{2}} \frac{1}{r(\theta)} \, d\theta$を求めよ.
浜松医科大学 国立 浜松医科大学 2014年 第1問
$p$を正の実数として,放物線$C:y^2=4px$を定める.$C$の頂点を$\mathrm{O}$,焦点を$\mathrm{F}$,準線を$\ell:x=-p$とする.$C$上の$2$点$\mathrm{A}(a,\ 2 \sqrt{pa}) (a>0)$と$\mathrm{B}(b,\ -2 \sqrt{pb}) (b>0)$を考えるとき,以下の問いに答えよ.

(1)$\mathrm{A}$における$C$の接線を$\ell (\mathrm{A})$とし,$\ell(\mathrm{A})$と準線$\ell$との交点を$\mathrm{P}$とする.$\ell(\mathrm{A})$の方程式をかいて,$\mathrm{P}$の座標を求めよ.また,線分$\mathrm{AP}$の長さは線分$\mathrm{AF}$の長さより大きいことを示せ.
(2)接線$\ell(\mathrm{A})$が直線$\mathrm{AB}$と$\mathrm{A}$において直交するとき,$b$を$a,\ p$を用いて表せ.また$a$が$0<a<\infty$の範囲内を動くとき,$b$の最小値を求めよ.

以下$(2)$の最小値を実現する$C$上の$2$点を$\mathrm{A}_0$,$\mathrm{B}_0$とし,接線$\ell(\mathrm{A}_0)$と準線$\ell$の交点を$\mathrm{P}_0$とする.

(3)直線$\mathrm{OA}_0$と直線$\mathrm{P}_0 \mathrm{B}_0$は$\mathrm{O}$において直交することを示せ.
(4)$\triangle \mathrm{A}_0 \mathrm{OB}_0$の面積を$S$,線分$\mathrm{A}_0 \mathrm{B}_0$と$C$で囲まれた図形の面積を$T$とするとき,比$S:T$を求めよ.
山形大学 国立 山形大学 2014年 第2問
三角形$\mathrm{ABC}$の各辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$を$1:2$に内分する点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$とする.$\mathrm{AQ}$と$\mathrm{CP}$の交点を$\mathrm{S}$,$\mathrm{BR}$と$\mathrm{AQ}$の交点を$\mathrm{T}$,$\mathrm{CP}$と$\mathrm{BR}$の交点を$\mathrm{U}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とするとき,次の問に答えよ.
(図は省略)

(1)$\overrightarrow{\mathrm{AQ}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)点$\mathrm{Q}$を通り辺$\mathrm{AC}$と平行な直線と,$\mathrm{BR}$の交点を$\mathrm{V}$とするとき,$\overrightarrow{\mathrm{VQ}}$を$\overrightarrow{c}$を用いて表せ.
(3)$\overrightarrow{\mathrm{AT}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(4)$\overrightarrow{\mathrm{AS}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(5)$|\overrightarrow{b}|=1$,$|\overrightarrow{c}|=\sqrt{3}$,$\angle \mathrm{BAC}={90}^\circ$であるとき,$|\overrightarrow{\mathrm{ST}}|$,$|\overrightarrow{\mathrm{SU}}|$,$\angle \mathrm{TSU}$および三角形$\mathrm{STU}$の面積を求めよ.
山口大学 国立 山口大学 2014年 第2問
座標平面において,方程式$\displaystyle \frac{x^2}{9}-\frac{y^2}{4}=1$が表す双曲線$C$と点$\mathrm{P}(a,\ 0)$がある.ただし,$a>3$とする.点$\mathrm{P}$を通り$y$軸に平行な直線と双曲線$C$との交点の一つである点$\mathrm{Q}(a,\ b)$をとる.ただし,$b>0$とする.さらに,点$\mathrm{Q}$における双曲線$C$の接線$\ell$と$x$軸との交点を$\mathrm{R}(c,\ 0)$とする.このとき,次の問いに答えなさい.

(1)$a$を用いて$b$を表しなさい.
(2)$a$を用いて接線$\ell$の方程式を表しなさい.
(3)$a$を用いて$c$を表しなさい.
(4)極限値$\displaystyle \lim_{a \to \infty} \frac{\mathrm{PQ}}{\mathrm{PR}}$を求めなさい.
山口大学 国立 山口大学 2014年 第1問
$k$を正の実数とする.座標平面において,方程式$y=-x^2-2x-1$が表す放物線$C_1$および方程式$y=kx^2$が表す放物線$C_2$がある.このとき,次の問いに答えなさい.

(1)放物線$C_1$の接線であり,$C_2$の接線でもあるような直線は$2$つある.この$2$つの直線の方程式を求めなさい.
(2)$(1)$で求めた$2$つの直線の交点を$\mathrm{P}$とする.$k$が正の実数の範囲を動くときの$\mathrm{P}$の軌跡を求め,図示しなさい.
山口大学 国立 山口大学 2014年 第4問
座標平面において,点$\mathrm{O}(0,\ 0)$,点$\mathrm{A}(1,\ 1)$がある.方程式$y=-ax+2a+2$が表す直線を$\ell$とするとき,次の問いに答えなさい.ただし,$a$は正の実数とする.

(1)直線$\ell$に関して点$\mathrm{A}$と対称な点を$\mathrm{A}^\prime$とする.$\mathrm{A}^\prime$の座標を求めなさい.
(2)点$\mathrm{P}$が直線$\ell$上を動くときの$\mathrm{OP}+\mathrm{PA}$の最小値を,$a$を用いて表しなさい.
(3)$(2)$で求めた$\mathrm{OP}+\mathrm{PA}$の最小値を$f(a)$とするとき,$f(a)$を最大にするような$a$の値を求めなさい.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。