タグ「直線」の検索結果

75ページ目:全2462問中741問~750問を表示)
熊本大学 国立 熊本大学 2014年 第4問
$a$を$a>2$である実数とする.$xy$平面上の曲線$\displaystyle C:y=\frac{1}{\sin x \cos x} (0<x<\frac{\pi}{2})$と直線$y=a$の交点の$x$座標を$\alpha,\ \beta (\alpha<\beta)$とする.以下の問いに答えよ.

(1)$\tan \alpha$および$\tan \beta$を$a$を用いて表せ.
(2)$C$と$x$軸,および$2$直線$x=\alpha$,$x=\beta$で囲まれた領域を$S$とする.$S$の面積を$a$を用いて表せ.
(3)$S$を$x$軸の周りに回転して得られる立体の体積$V$を$a$を用いて表せ.
熊本大学 国立 熊本大学 2014年 第3問
放物線$C:y=ax^2+bx+c (a \neq 0)$が点$\mathrm{P}(1,\ -2)$と$\mathrm{Q}(5,\ 10)$を通るとし,$\mathrm{P}$,$\mathrm{Q}$における$C$の接線をそれぞれ$\ell$,$m$とする.以下の問いに答えよ.

(1)$b,\ c$をそれぞれ$a$を用いて表せ.
(2)$\ell$と$m$の交点の$y$座標が$-4$であるとき,$a,\ b,\ c$を求めよ.
(3)$(2)$で求めた$a,\ b,\ c$について,放物線$C$と$\ell$,$m$で囲まれた部分の面積を求めよ.
熊本大学 国立 熊本大学 2014年 第4問
$a$を正の実数とする.$xy$平面上の曲線$C:y=e^{ax}$の接線で,原点を通るものを$\ell$とし,$C$と$\ell$および$y$軸で囲まれた領域を$S$とする.以下の問いに答えよ.

(1)$S$を$x$軸の周りに回転して得られる立体の体積$V_1$を求めよ.
(2)$S$を$y$軸の周りに回転して得られる立体の体積$V_2$を求めよ.
(3)$V_1=V_2$となるときの$a$の値を求めよ.
新潟大学 国立 新潟大学 2014年 第2問
一辺の長さが$1$の正四面体$\mathrm{OABC}$を考える.辺$\mathrm{AB}$を$2:1$に内分する点を$\mathrm{P}$とし,線分$\mathrm{CP}$を$3:1$に内分する点を$\mathrm{Q}$とする.また,直線$\mathrm{OC}$上の点$\mathrm{R}$を$\overrightarrow{\mathrm{QR}} \perp \overrightarrow{\mathrm{OC}}$となるようにとる.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.このとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.さらに,$\overrightarrow{\mathrm{OQ}}$の大きさ$|\overrightarrow{\mathrm{OQ}}|$を求めよ.
(2)$\overrightarrow{\mathrm{OR}}$と$\overrightarrow{\mathrm{RC}}$の大きさの比$|\overrightarrow{\mathrm{OR}}|:|\overrightarrow{\mathrm{RC}}|$を求めよ.
(3)$\triangle \mathrm{OQR}$の面積を求めよ.
新潟大学 国立 新潟大学 2014年 第4問
関数$f(x)=(-4x^2+2)e^{-x^2}$について,次の問いに答えよ.

(1)$f(x)$の極値を求めよ.
(2)$a$を$a \geqq 0$となる実数とし,$\displaystyle I(a)=\int_0^a e^{-x^2} \, dx$とする.このとき,定積分$\displaystyle \int_0^a x^2e^{-x^2} \, dx$を$a,\ I(a)$を用いて表せ.
(3)曲線$y=f(x)$,$x$軸,$y$軸および直線$x=5$で囲まれる部分の面積を求めよ.
新潟大学 国立 新潟大学 2014年 第2問
一辺の長さが$1$の正四面体$\mathrm{OABC}$を考える.辺$\mathrm{AB}$を$2:1$に内分する点を$\mathrm{P}$とし,線分$\mathrm{CP}$を$3:1$に内分する点を$\mathrm{Q}$とする.また,直線$\mathrm{OC}$上の点$\mathrm{R}$を$\overrightarrow{\mathrm{QR}} \perp \overrightarrow{\mathrm{OC}}$となるようにとる.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.このとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(2)$\overrightarrow{\mathrm{QR}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(3)$\overrightarrow{\mathrm{QR}}$の大きさ$|\overrightarrow{\mathrm{QR}}|$を求めよ.
新潟大学 国立 新潟大学 2014年 第4問
座標平面上の曲線$y=|x^2+2x|$を$C$とする.このとき,次の問いに答えよ.

(1)曲線$C$と直線$y=x+2$の共有点の座標を求めよ.
(2)曲線$C$と直線$y=x+2$で囲まれた部分の面積を求めよ.
(3)曲線$C$と直線$y=x+a$がちょうど$2$つの共有点をもつような実数$a$の値の範囲を求めよ.
金沢大学 国立 金沢大学 2014年 第1問
$a$を実数とする.このとき,座標空間内の球面$S:x^2+y^2+z^2=1$と直線$\ell:(x,\ y,\ z)=(2,\ -1,\ 0)+t(-1,\ a,\ a)$について,次の問いに答えよ.

(1)$S$と$\ell$が異なる$2$点で交わるような$a$の値の範囲を求めよ.
(2)$a$の値が$(1)$で求めた範囲にあるとき,$S$と$\ell$の$2$つの交点の間の距離$d$を$a$を用いて表せ.
(3)$(2)$の$d$が最大となるような実数$a$の値とそのときの$d$を求めよ.
金沢大学 国立 金沢大学 2014年 第2問
関数$\displaystyle y=\frac{1}{e^x+e^{-x}}$のグラフ$C$について,次の問いに答えよ.

(1)$C$の変曲点のうち,$x$座標が最大となる点$\mathrm{P}$の$x$座標を求めよ.
(2)$(1)$で求めた$\mathrm{P}$の$x$座標を$b$とするとき,
\[ \tan \theta=e^b \]
をみたす$\displaystyle \theta \left( 0<\theta<\frac{\pi}{2} \right)$に対し,$\tan 2\theta$および$\theta$の値を求めよ.
(3)上の$b$に対する直線$x=b$と$x$軸,$y$軸および$C$で囲まれた図形の面積を求めよ.
金沢大学 国立 金沢大学 2014年 第1問
放物線$C:y=x^2+2x$上の$2$点$(a,\ a^2+2a)$,$(b,\ b^2+2b)$における接線をそれぞれ$\ell_a$,$\ell_b$とするとき,次の問いに答えよ.ただし,$a<b$とする.

(1)$2$直線$\ell_a,\ \ell_b$の方程式を求めよ.また,$\ell_a$と$\ell_b$の交点の$x$座標を求めよ.
(2)放物線$C$と$2$直線$\ell_a,\ \ell_b$とで囲まれた図形の面積$S$を求めよ.
(3)$2$直線$\ell_a,\ \ell_b$が垂直に交わるように$a,\ b$が動くとき,$a,\ b$がみたす関係式を求めよ.また,そのときの面積$S$の最小値とそれを与える$a,\ b$の値を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。