タグ「直線」の検索結果

73ページ目:全2462問中721問~730問を表示)
一橋大学 国立 一橋大学 2014年 第3問
円$C:x^2+y^2=1$上の点$\mathrm{P}$における接線を$\ell$とする.点$(1,\ 0)$を通り$\ell$と平行な直線を$m$とする.直線$m$と円$C$の$(1,\ 0)$以外の共有点を$\mathrm{P}^\prime$とする.ただし,$m$が直線$x=1$のときは$\mathrm{P}^\prime$を$(1,\ 0)$とする.

円$C$上の点$\mathrm{P}(s,\ t)$から点$\mathrm{P}^\prime(s^\prime,\ t^\prime)$を得る上記の操作を$\mathrm{T}$と呼ぶ.

(1)$s^\prime,\ t^\prime$をそれぞれ$s$と$t$の多項式として表せ.
(2)点$\mathrm{P}$に操作$\mathrm{T}$を$n$回繰り返して得られる点を$\mathrm{P}_n$とおく.$\mathrm{P}$が$\displaystyle \left( \frac{\sqrt{3}}{2},\ \frac{1}{2} \right)$のとき,$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$を図示せよ.
(3)正の整数$n$について,$\mathrm{P}_n=\mathrm{P}$となるような点$\mathrm{P}$の個数を求めよ.
名古屋大学 国立 名古屋大学 2014年 第1問
原点を中心とする半径$1$の円を$C$とし,$x$軸上に点$\mathrm{P}(a,\ 0)$をとる.ただし$a>1$とする.$\mathrm{P}$から$C$へ引いた$2$本の接線の接点を結ぶ直線が$x$軸と交わる点を$\mathrm{Q}$とする.

(1)$\mathrm{Q}$の$x$座標を求めよ.
(2)点$\mathrm{R}$が$C$上にあるとき,$\displaystyle \frac{\mathrm{PR}}{\mathrm{QR}}$が$\mathrm{R}$によらず一定であることを示し,その値を$a$を用いて表せ.
(3)$C$上の点$\mathrm{R}$が$\angle \mathrm{PRQ}=90^\circ$をみたすとする.このような$\mathrm{R}$の座標と線分$\mathrm{PR}$の長さを求めよ.
名古屋大学 国立 名古屋大学 2014年 第3問
実数$t$に対して$2$点$\mathrm{P}(t,\ t^2)$,$\mathrm{Q}(t+1,\ (t+1)^2)$を考える.

(1)$2$点$\mathrm{P}$,$\mathrm{Q}$を通る直線$\ell$の方程式を求めよ.
(2)$a$は定数とし,直線$x=a$と$\ell$の交点の$y$座標を$t$の関数と考えて$f(t)$とおく.$t$が$-1 \leqq t \leqq 0$の範囲を動くときの$f(t)$の最大値を$a$を用いて表せ.
(3)$t$が$-1 \leqq t \leqq 0$の範囲を動くとき,線分$\mathrm{PQ}$が通過してできる図形を図示し,その面積を求めよ.
北海道大学 国立 北海道大学 2014年 第1問
$f(x)=x^4-4x^3-8x^2$とする.

(1)関数$f(x)$の極大値と極小値,およびそのときの$x$を求めよ.
(2)曲線$y=f(x)$に$2$点$(a,\ f(a))$と$(b,\ f(b)) (a<b)$で接する直線の方程式を求めよ.
広島大学 国立 広島大学 2014年 第2問
$a_1,\ a_2,\ a_3$は定数で,$a_1>0$とする.放物線$C:y=a_1x^2+a_2x+a_3$上の点$\mathrm{P}(2,\ 4a_1+2a_2+a_3)$における接線を$\ell$とし,$\ell$と$x$軸との交点を$\mathrm{Q}(q,\ 0)$,$\ell$と$y$軸との交点を$\mathrm{R}(0,\ a_4)$とする.$a_1$,$a_2$,$a_3$,$a_4$がこの順に等差数列であるとき,次の問いに答えよ.

(1)$a_2,\ a_3,\ a_4$を$a_1$を用いて表せ.
(2)$q$の値を求めよ.
(3)放物線$C$,接線$\ell$,および$y$軸で囲まれた部分の面積を$S$とする.$S=q$となるとき,$a_1$を求めよ.
北海道大学 国立 北海道大学 2014年 第1問
$2$つの放物線
\[ C_1:y=-x^2+\frac{3}{2},\quad C_2:y=(x-a)^2+a \quad (a>0) \]
がある.点$\displaystyle \mathrm{P}_1 \left( p,\ -p^2+\frac{3}{2} \right)$における$C_1$の接線を$\ell_1$とする.

(1)$C_1$と$C_2$が共有点を持たないための$a$に関する条件を求めよ.
(2)$\ell_1$と平行な$C_2$の接線$\ell_2$の方程式と,$\ell_2$と$C_2$の接点$\mathrm{P}_2$の座標を$a,\ p$を用いて表せ.
(3)$C_1$と$C_2$が共有点を持たないとする.$(2)$で求めた$\mathrm{P}_2$と$\mathrm{P}_1$を結ぶ線分が$\ell_1$と垂直になるとき,$p$を求めよ.
大阪大学 国立 大阪大学 2014年 第1問
$i$は虚数単位とし,実数$a,\ b$は$a^2+b^2>0$を満たす定数とする.複素数$(a+bi)(x+yi)$の実部が$2$に等しいような座標平面上の点$(x,\ y)$全体の集合を$L_1$とし,また$(a+bi)(x+yi)$の虚部が$-3$に等しいような座標平面上の点$(x,\ y)$全体の集合を$L_2$とする.

(1)$L_1$と$L_2$はともに直線であることを示せ.
(2)$L_1$と$L_2$は互いに垂直であることを示せ.
(3)$L_1$と$L_2$の交点を求めよ.
大阪大学 国立 大阪大学 2014年 第4問
半径$1$の$2$つの球$S_1$と$S_2$が$1$点で接している.互いに重なる部分のない等しい半径を持つ$n$個($n \geqq 3$)の球$T_1,\ T_2,\ \cdots,\ T_n$があり,次の条件(ア),(イ)を満たす.

\mon[(ア)] $T_i$は$S_1$,$S_2$にそれぞれ$1$点で接している($i=1,\ 2,\ \cdots,\ n$).
\mon[(イ)] $T_i$は$T_{i+1}$に$1$点で接しており($i=1,\ 2,\ \cdots,\ n-1$),そして$T_n$は$T_1$に$1$点で接している.

このとき,以下の問いに答えよ.

(1)$T_1,\ T_2,\ \cdots,\ T_n$の共通の半径$r_n$を求めよ.
(2)$S_1$と$S_2$の中心を結ぶ直線のまわりに$T_1$を回転してできる回転体の体積を$V_n$とし,$T_1,\ T_2,\ \cdots,\ T_n$の体積の和を$W_n$とするとき,極限
\[ \lim_{n \to \infty} \frac{W_n}{V_n} \]
を求めよ.
東京工業大学 国立 東京工業大学 2014年 第4問
点$\mathrm{P}(t,\ s)$が$s=\sqrt{2}t^2-2t$を満たしながら$xy$平面上を動くときに,点$\mathrm{P}$を原点を中心として$45^\circ$回転した点$\mathrm{Q}$の軌跡として得られる曲線を$C$とする.さらに,曲線$C$と$x$軸で囲まれた図形を$D$とする.

(1)点$\mathrm{Q}(x,\ y)$の座標を$t$を用いて表せ.
(2)直線$y=a$と曲線$C$がただ$1$つの共有点を持つような定数$a$の値を求めよ.
(3)図形$D$を$y$軸のまわりに$1$回転して得られる回転体の体積$V$を求めよ.
東北大学 国立 東北大学 2014年 第1問
曲線$C:y=x^2$上の点$\mathrm{P}(a,\ a^2)$における接線を$\ell_1$,点$\mathrm{Q}(b,\ b^2)$における接線を$\ell_2$とする.ただし,$a<b$とする.$\ell_1$と$\ell_2$の交点を$\mathrm{R}$とし,線分$\mathrm{PR}$,線分$\mathrm{QR}$および曲線$C$で囲まれる図形の面積を$S$とする.

(1)$\mathrm{R}$の座標を$a$と$b$を用いて表せ.
(2)$S$を$a$と$b$を用いて表せ.
(3)$\ell_1$と$\ell_2$が垂直であるときの$S$の最小値を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。