タグ「直線」の検索結果

72ページ目:全2462問中711問~720問を表示)
横浜国立大学 国立 横浜国立大学 2014年 第5問
$xy$平面上に曲線$C:y=x^2$がある.$C$上の$2$点$\mathrm{P}$,$\mathrm{Q}$が$\mathrm{PQ}=2$をみたしながら動くとき,$\mathrm{PQ}$の中点の軌跡を$D$とする.次の問いに答えよ.

(1)$D$の方程式を求めよ.
(2)$C$,$D$,$y$軸および直線$\displaystyle x=\frac{1}{2}$で囲まれた部分を$x$軸のまわりに$1$回転させてできる立体の体積を求めよ.
横浜国立大学 国立 横浜国立大学 2014年 第1問
$a,\ b$を実数とする.$xy$平面上の曲線$C:y=x^3+ax^2+x-2$と直線$\ell:y=bx-2$が異なる$3$点で交わるとき,次の問いに答えよ.

(1)$a,\ b$の条件を求めよ.
(2)$3$つの交点それぞれにおける$C$の接線の中に,傾きが$1$より大きいものと,$1$より小さいものがどちらも存在するための$a,\ b$の条件を求め,その条件をみたす$ab$平面上の点$(a,\ b)$の範囲を図示せよ.
横浜国立大学 国立 横浜国立大学 2014年 第2問
$\mathrm{O}$を原点とする座標空間に,$4$点
\[ \mathrm{A}(-2,\ 1,\ 3),\quad \mathrm{B}(s,\ 3,\ -1),\quad \mathrm{C}(1,\ 3,\ 4),\quad \mathrm{D}(t,\ 2t,\ 2t) \]
がある.ただし,$s,\ t$は実数で$t \neq 0$である.$\mathrm{A}$を通り$\overrightarrow{\mathrm{OC}}$に平行な直線と,$\mathrm{B}$を通り$\overrightarrow{\mathrm{OD}}$に平行な直線が点$\mathrm{P}$で交わるとする.次の問いに答えよ.

(1)$s$の値および$\mathrm{P}$の座標を求めよ.
以下では$\triangle \mathrm{PAB} \text{∽} \triangle \mathrm{OCD}$を仮定する.
(2)$t$の値を求めよ.
(3)$\mathrm{D}$から平面$\mathrm{PAB}$に下ろした垂線を$\mathrm{DH}$とするとき,$\mathrm{H}$の座標を求めよ.
京都大学 国立 京都大学 2014年 第1問
座標空間における次の$3$つの直線$\ell$,$m$,$n$を考える:

$\ell$は点$\mathrm{A}(1,\ 0,\ -2)$を通り,ベクトル$\overrightarrow{u}=(2,\ 1,\ -1)$に平行な直線である.
$m$は点$\mathrm{B}(1,\ 2,\ -3)$を通り,ベクトル$\overrightarrow{v}=(1,\ -1,\ 1)$に平行な直線である.
$n$は点$\mathrm{C}(1,\ -1,\ 0)$を通り,ベクトル$\overrightarrow{w}=(1,\ 2,\ 1)$に平行な直線である.

$\mathrm{P}$を$\ell$上の点として,$\mathrm{P}$から$m$,$n$へ下ろした垂線の足をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とする.このとき,$\mathrm{PQ}^2+\mathrm{PR}^2$を最小にするような$\mathrm{P}$と,そのときの$\mathrm{PQ}^2+\mathrm{PR}^2$を求めよ.
京都大学 国立 京都大学 2014年 第6問
双曲線$\displaystyle y=\frac{1}{x}$の第$1$象限にある部分と,原点$\mathrm{O}$を中心とする円の第$1$象限にある部分を,それぞれ$C_1$,$C_2$とする.$C_1$と$C_2$は$2$つの異なる点$\mathrm{A}$,$\mathrm{B}$で交わり,点$\mathrm{A}$における$C_1$の接線$\ell$と線分$\mathrm{OA}$のなす角は$\displaystyle \frac{\pi}{6}$であるとする.このとき,$C_1$と$C_2$で囲まれる図形の面積を求めよ.
京都大学 国立 京都大学 2014年 第3問
座標空間における次の$3$つの直線$\ell$,$m$,$n$を考える:

$\ell$は点$\mathrm{A}(1,\ 0,\ -2)$を通り,ベクトル$\overrightarrow{u}=(2,\ 1,\ -1)$に平行な直線である.
$m$は点$\mathrm{B}(1,\ 2,\ -3)$を通り,ベクトル$\overrightarrow{v}=(1,\ -1,\ 1)$に平行な直線である.
$n$は点$\mathrm{C}(1,\ -1,\ 0)$を通り,ベクトル$\overrightarrow{w}=(1,\ 2,\ 1)$に平行な直線である.

$\mathrm{P}$を$\ell$上の点として,$\mathrm{P}$から$m$,$n$へ下ろした垂線の足をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とする.このとき,$\mathrm{PQ}^2+\mathrm{PR}^2$を最小にするような$\mathrm{P}$と,そのときの$\mathrm{PQ}^2+\mathrm{PR}^2$を求めよ.
一橋大学 国立 一橋大学 2014年 第2問
$0<t<1$とし,放物線$C:y=x^2$上の点$(t,\ t^2)$における接線を$\ell$とする.$C$と$\ell$と$x$軸で囲まれる部分の面積を$S_1$とし,$C$と$\ell$と直線$x=1$で囲まれる部分の面積を$S_2$とする.$S_1+S_2$の最小値を求めよ.
一橋大学 国立 一橋大学 2014年 第5問
数直線上の点$\mathrm{P}$を次の規則で移動させる.一枚の硬貨を投げて,表が出れば$\mathrm{P}$を$+1$だけ移動させ,裏が出れば$\mathrm{P}$を原点に関して対称な点に移動させる.$\mathrm{P}$は初め原点にあるとし,硬貨を$n$回投げた後の$\mathrm{P}$の座標を$a_n$とする.

(1)$a_3=0$となる確率を求めよ.
(2)$a_4=1$となる確率を求めよ.
(3)$n \geqq 3$のとき,$a_n=n-3$となる確率を$n$を用いて表せ.
埼玉大学 国立 埼玉大学 2014年 第3問
$\displaystyle f(x)=x^3-\frac{1}{2}x$とする.曲線$C:y=f(x)$上に$2$点$\mathrm{P}(t,\ f(t))$,$\mathrm{Q}(-t,\ f(-t)) (t>0)$をとり,点$\mathrm{P}$における接線と法線,および,点$\mathrm{Q}$における接線と法線によって囲まれる図形を$A$とする.

(1)点$\mathrm{P}$における接線を$\ell_1$,法線を$\ell_2$とし,原点$(0,\ 0)$と$\ell_1$,$\ell_2$との距離をそれぞれ$d_1$,$d_2$とおく.$d_1$,$d_2$を$t$を用いて表せ.
(2)$(1)$で定めた$d_1$,$d_2$に対し,$d_1=d_2$となるような$t$の値をすべて求めよ.
(3)$(2)$で求めたそれぞれの$t$の値に対し,図形$A$の面積を求めよ.
名古屋大学 国立 名古屋大学 2014年 第1問
空間内にある半径$1$の球(内部を含む)を$B$とする.直線$\ell$と$B$が交わっており,その交わりは長さ$\sqrt{3}$の線分である.

(1)$B$の中心と$\ell$との距離を求めよ.
(2)$\ell$のまわりに$B$を$1$回転してできる立体の体積を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。