タグ「直線」の検索結果

70ページ目:全2462問中691問~700問を表示)
宮城大学 公立 宮城大学 2015年 第4問
$3$つの放物線$y=x^2+1$,$y=x^2$,$y=-x^2$を,それぞれ$C_1$,$C_2$,$C_3$とするとき,次の問いに答えなさい.

(1)$C_1$上の点$(a,\ a^2+1)$における接線を$\ell$とするとき,$\ell$の方程式を求めなさい.また,$C_2$と$\ell$とで囲まれる図形の面積は常に一定となることを示しなさい.
(2)$C_3$を平行移動した放物線と$C_2$とで囲まれる図形の面積が常に$\displaystyle \frac{8}{3}$となるようにしたい.このとき,$C_3$を平行移動した放物線の頂点の軌跡を求めなさい.また,その軌跡のグラフをかきなさい.
会津大学 公立 会津大学 2015年 第5問
関数$y=xe^{-x}$のグラフを$C$とするとき,以下の問いに答えよ.

(1)関数$y=xe^{-x}$の増減,極値,$C$の凹凸,変曲点を調べて,増減表をつくり,$C$を座標平面上に描け.ただし,$\displaystyle \lim_{x \to \infty}xe^{-x}=0$を用いてもよい.
(2)$C$の変曲点における接線を$\ell$とする.$\ell$と$x$軸の交点を求めよ.
(3)$C$と$\ell$と$x$軸で囲まれた部分の面積を求めよ.
兵庫県立大学 公立 兵庫県立大学 2015年 第2問
放物線$C:y=x^2$上の点$\mathrm{A}(a,\ a^2)$における$C$の接線$\ell_T$,さらに,点$\mathrm{A}$を通り,$\ell_T$に直交する直線(法線)$\ell_N$を考える.また,法線$\ell_N$に関して直線$x=a$と対称な直線を$\ell_R$とする.次の問に答えなさい.

(1)接線$\ell_T$と$x$軸のなす角を$\theta$とする.ただし,$a>0$の範囲では$\displaystyle 0<\theta<\frac{\pi}{2}$とする.$a>0$のとき,$\displaystyle \tan \left( \frac{\pi}{2}+2\theta \right)$を$a$を用いて表しなさい.
(2)直線$\ell_R$は$a$の値によらず定点を通ることを示しなさい.
和歌山県立医科大学 公立 和歌山県立医科大学 2015年 第1問
$f(x)=x^3+ax^2+bx+c$とし,$a,\ b,\ c$は実数とする.$y=f(x)$によって表される曲線を$C$とおく.$C$は$x$軸と点$(-1,\ 0)$でのみ交わるとする.さらに,$C$の接線で傾きが$-1$のものがただ一つ存在するとし,それを$\ell$とする.

(1)$f^\prime(-1)>0$となることを示せ.
(2)$a$の値の範囲を求めよ.
(3)$C$と$\ell$の接点の$x$座標が$1$であるとき,$C$と$\ell$と$x$軸で囲まれる部分の面積を求めよ.
和歌山県立医科大学 公立 和歌山県立医科大学 2015年 第3問
$xyz$空間の原点を$\mathrm{O}$とし,点$(0,\ 0,\ 1)$と点$(\sqrt{3},\ 1,\ 1)$を通る直線を$\ell$とする.点$\mathrm{P}$は,時刻$t=0$のとき$(-4,\ 0,\ 0)$にあって,$x$軸上を正の向きに速さ$1$で動いている.点$\mathrm{Q}$は,$t=0$のとき$(0,\ 0,\ 1)$にあって,直線$\ell$上を$x$座標が増えるように速さ$2$で動いている.

(1)点$\mathrm{P}$,$\mathrm{Q}$の座標を$t$の式で表せ.
(2)三角形$\mathrm{OPQ}$の面積$S$を$t$の式で表せ.
(3)$-0.33 \leqq t \leqq 2.6$のときの$S$の最大値と最小値,およびそれらをとる$t$の値を求めよ.
大阪府立大学 公立 大阪府立大学 2015年 第4問
実数全体を定義域とする関数$f(x),\ g(x)$をそれぞれ
\[ f(x)=e^x,\quad g(x)=\frac{e^{x+1}+e^{-x-1}}{2} \]
で定める.曲線$y=f(x)$上の点$(t,\ e^t)$における法線に関して,直線$x=t$を対称移動した直線を$\ell$とする.このとき,以下の問いに答えよ.

(1)$\ell$の方程式を求めよ.
(2)$\ell$は曲線$y=g(x)$に接することを示し,その接点の$x$座標を求めよ.
(3)$(2)$で求めた接点を$\mathrm{P}$とする.$\ell$と曲線$y=f(x)$,および$\mathrm{P}$を通り$y$軸に平行な直線で囲まれた部分の面積を$S(t)$とする.$t$が実数全体を動くとき,$S(t)$の最小値を求めよ.
大阪府立大学 公立 大阪府立大学 2015年 第3問
$a$を正の定数とする.放物線$C:y=ax^2$上の点$\mathrm{P}(t,\ at^2)$(ただし$t \neq 0$)に対して,$C$の$\mathrm{P}$での接線を$m$,$\mathrm{P}$を通り,$y$軸に平行な直線を$v$とする.直線$m$に関して$v$を対称移動した直線を$\ell$とする.このとき,以下の問いに答えよ.

(1)$\ell$の傾きを,$a,\ t$を用いて表せ.
(2)$\ell$の$y$切片は$t$によらず一定であることを示せ.
福岡女子大学 公立 福岡女子大学 2015年 第3問
以下の問に答えなさい.

(1)定積分$\displaystyle \int_0^3 (9-x^2) \, dx$の値を求めなさい.
(2)$k>0$とする.定義域を$-3 \leqq x \leqq 3$とする関数
\[ f(x)=k(9-x^2) \]
のグラフ$y=f(x)$と$x$軸で囲まれる部分の面積が$1$となるような$k$の値を求めなさい.
(3)$k$は$(2)$で求めた値とし,$-3 \leqq t \leqq 3$とする.$x \leqq t$のとき,グラフ$y=f(x)$,$x$軸および直線$x=t$で囲まれた部分の面積$F(t)$を$t$の式で表しなさい.
(4)$(3)$で求めた$t$の関数$F(t)$の増減表を作成し,関数$y=F(t)$のグラフの概形を描きなさい.
大阪府立大学 公立 大阪府立大学 2015年 第3問
四面体$\mathrm{OABC}$が与えられており,各辺の長さが
\[ \mathrm{OA}=2,\quad \mathrm{OB}=3,\quad \mathrm{OC}=3,\quad \mathrm{AB}=3,\quad \mathrm{BC}=2,\quad \mathrm{CA}=3 \]
であるとする.また,点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{C}$を通る平面を$\alpha$,点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を通る平面を$\beta$とし,点$\mathrm{B}$を通り平面$\alpha$に垂直な直線を$g$,点$\mathrm{C}$を通り平面$\beta$に垂直な直線を$h$とする.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}$,$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}$を求めよ.
(2)直線$g$と平面$\alpha$の交点を$\mathrm{P}$,直線$h$と平面$\beta$の交点を$\mathrm{Q}$とするとき,$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$を用いて,$\overrightarrow{\mathrm{OP}}$,$\overrightarrow{\mathrm{OQ}}$を表せ.
(3)直線$g$と直線$h$は交わることを示せ.また,直線$g$と直線$h$の交点を$\mathrm{R}$とするとき,$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$を用いて,$\overrightarrow{\mathrm{OR}}$を表せ.
北九州市立大学 公立 北九州市立大学 2015年 第2問
$xy$平面上の原点$\mathrm{O}$と$3$次関数$f(x)=x^3-6x^2+15x$と$1$次関数$g(x)=3ax$を考える.ただし,$a$は定数である.また,関数$y=f(x)$のグラフで$x \geqq 0$を満たす部分を曲線$C$とする.曲線$y=f(x)$上の点を$\mathrm{P}(p,\ f(p))$とし,点$\mathrm{P}$における曲線$y=f(x)$の接線を$\ell$とする.ただし,$p \geqq 0$を満たす.以下の問題に答えよ.

(1)関数$f(x)$が単調に増加することを示せ.
(2)直線$\ell$の傾きが最小となるとき,$p$の値と直線$\ell$の式を求めよ.
(3)関数$y=g(x)$のグラフが曲線$C$と異なる$3$点で交わるとき,$a$の値の範囲を求めよ.
(4)$a$の値は$(3)$で求めた範囲を満たすとする.$x \geqq 0$の範囲で関数$f(x)-g(x)$が最小となるとき,$x$を$a$を用いて表せ.
(5)点$\mathrm{P}$が原点$\mathrm{O}$と一致する場合に,接線$\ell$が曲線$C$と原点以外で交わる点を$\mathrm{Q}$とおき,曲線$C$上において原点$\mathrm{O}$と点$\mathrm{Q}$の間に点$\mathrm{R}$をとる.$\triangle \mathrm{ORQ}$の面積が最大となるとき,点$\mathrm{R}$の座標と$\triangle \mathrm{ORQ}$の面積を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。