タグ「直線」の検索結果

67ページ目:全2462問中661問~670問を表示)
京都薬科大学 私立 京都薬科大学 2015年 第4問
次の$[ ]$にあてはまる数または式を記入せよ.なお,$k>0$として,解答はすべて数あるいは$k$を用いた式で示すこと.

(1)$2$次関数$f(x)=-x^2+(k-1)x+k$を考える.放物線$y=f(x)$の頂点の座標は$([ア],\ [イ])$となり,この放物線上の点$(0,\ f(0))$における接線を$\ell$とすると,$\ell$の方程式は$y=([ウ])x+[エ]$となる.
(2)次に$2$次関数$g(x)=x^2+ax+b$($a,\ b$は定数)を考える.放物線$y=g(x)$が点$(k,\ 0)$において放物線$y=f(x)$と接線を共有するとき,$a,\ b$の値はそれぞれ$[オ]$,$[カ]$であり,$\ell$と放物線$y=g(x)$との交点の$x$座標はそれぞれ$[キ]$,$[ク]$となる(ただし$[キ]<[ク]$とする).
(3)さらに$\ell$と放物線$y=g(x)$とで囲まれた部分の面積を$S$とするとき,$S$を$k$で表すと$[ケ]$となる.また,$\ell$は$k=[コ]$のとき放物線$y=g(x)$と$x$軸上で交わり,そのときの$S$は$[サ]$となる.
千葉工業大学 私立 千葉工業大学 2015年 第3問
次の各問に答えよ.

(1)$\displaystyle f(x)=|\displaystyle\frac{7|{2}x-3}-x$とする.方程式$f(x)=0$の解は,小さい順に,$\displaystyle x=\frac{[ア]}{[イ]}$,$\displaystyle \frac{[ウ]}{[エ]}$である.

折れ線$L:y=|f(x)|$と直線$y=k$(ただし,$k$は定数)がちょうど$3$点を共有するのは$\displaystyle k=\frac{[オ]}{[カ]}$のときであり,$L$と直線$y=mx-1$(ただし,$m$は定数)がちょうど$3$点を共有するのは$\displaystyle m=\frac{[キ]}{[ク]},\ \frac{[ケコ]}{[サ]}$のときである.

(2)三角形$\mathrm{ABC}$の内部の点$\mathrm{P}$に対して,等式$\overrightarrow{\mathrm{AP}}+5 \overrightarrow{\mathrm{BP}}+4 \overrightarrow{\mathrm{CP}}=k \overrightarrow{\mathrm{AB}}$(ただし,$k$は実数)が成り立つ.このとき,
\[ \overrightarrow{\mathrm{AP}}=\frac{k+[シ]}{[スセ]} \overrightarrow{\mathrm{AB}}+\frac{[ソ]}{[タ]} \overrightarrow{\mathrm{AC}} \]
である.直線$\mathrm{AP}$と辺$\mathrm{BC}$との交点$\mathrm{Q}$が$\mathrm{BC}$を$3:2$に内分するとき,
\[ \overrightarrow{\mathrm{AP}}=\frac{[チ]}{[ツ]} \overrightarrow{\mathrm{AQ}},\quad k=\frac{[テト]}{[ナ]} \]
である.
千葉工業大学 私立 千葉工業大学 2015年 第4問
$xy$平面において,放物線$C:y=9x^2$を$x$軸方向に$t$(ただし,$t>0$),$y$軸方向に$8$だけ平行移動して得られる放物線を$D$とする.また,$C$上の点$(p,\ 9p^2)$における$C$の接線を$\ell$とする.このとき,次の問いに答えよ.

(1)$D$の方程式は$y=9x^2-[アイ]tx+[ウ]t^2+[エ]$である.
(2)$\ell$の方程式は$y=[オカ]px-[キ]p^2$である.
以下,$\ell$は$D$にも接しているとする.
(3)$p$を$t$を用いて表すと,$\displaystyle p=\frac{[ク]}{[ケ]t}$である.また,$\ell$と$D$の接点の$x$座標$X$を$t$を用いて表すと
\[ X=t+\frac{[コ]}{[サ]t} \]
である.
(4)$X$は$\displaystyle t=\frac{[シ]}{[ス]}$のとき,最小値$\displaystyle \frac{[セ]}{[ソ]}$をとる.このとき,$C$と$D$と$\ell$で囲まれた部分の面積は$\displaystyle \frac{[タ]}{[チ]}$である.
東京薬科大学 私立 東京薬科大学 2015年 第4問
次の問に答えよ.ただし,$*$については$+,\ -$の$1$つが入る.

$y=x^3-2x$の表す曲線$C$がある.

(1)$\alpha \neq 0$のとき,$C$上の点$\mathrm{P}(\alpha,\ \alpha^3-2 \alpha)$における接線$\ell$の方程式は
\[ y=([$*$あ] \alpha^2+[$*$い])x+[$*$う] \alpha^3 \]
である.
(2)$\ell$が再び$C$と交わる点を$\mathrm{Q}$とすると,$\mathrm{Q}$の$x$座標は$[$*$え] \alpha$であり,線分$\mathrm{PQ}$と$C$とで囲まれる図形の面積は$\displaystyle \frac{[おか]}{[き]} \alpha^4$である.
(3)$\alpha>0$,線分$\mathrm{PQ}$の長さを$L$とするとき,$\displaystyle \frac{L^2}{\alpha^2}$が最小になるのは$\displaystyle \alpha=\frac{\sqrt{[く]}}{[け]}$のときである.
(4)原点を除く直線$y=[$*$こ]x$上の点からは,$C$への接線がちょうど$2$本引ける.
藤田保健衛生大学 私立 藤田保健衛生大学 2015年 第1問
原点を中心とした半径$1$の円に内接する正三角形$T_1$がある.$T_1$の頂点の$1$つが$\mathrm{A}(0,\ 1)$であり,$T_1$の残りの頂点のうち,$x$座標が負の値である方を$\mathrm{B}$とする.また,$T_1$を原点に関して対称移動したものを$T_2$とする.

(1)直線$\mathrm{AB}$の方程式は,$[$1$]$である.
(2)直線$\mathrm{AB}$と$T_2$の辺との交点のうち,$x$座標の値が大きい方の座標は$(x,\ y)=[$2$]$である.
(3)$T_1$と$T_2$が重なる部分の面積は$[$3$]$である.
藤田保健衛生大学 私立 藤田保健衛生大学 2015年 第2問
曲線$y=x^3-2x \cdots\cdots①$と直線$y=x+k \cdots\cdots②$がある.

(1)$k$の範囲が$[$4$]$のとき,曲線$①$と直線$②$は異なる$3$点を共有する.
(2)$k>0$とする.曲線$①$と直線$②$が異なる$2$点を共有するとき,$1$つは接点で,もう$1$つの共有点の$x$座標は$[$5$]$である.
首都大学東京 公立 首都大学東京 2015年 第2問
平行四辺形$\mathrm{ABCD}$において,$\mathrm{AD}=6$,$\angle \mathrm{A}={120}^\circ$,$\overrightarrow{\mathrm{AD}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\mathrm{AB}=x$とする.点$\mathrm{A}$から直線$\mathrm{CD}$に垂線$\mathrm{AP}$を引き,点$\mathrm{A}$を通り辺$\mathrm{AD}$に垂直な直線と対角線$\mathrm{BD}$の交点を$\mathrm{Q}$とする.このとき,以下の問いに答えなさい.

(1)線分$\mathrm{AP}$の長さを求めなさい.
(2)$\overrightarrow{\mathrm{AQ}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$x$の式で表しなさい.
(3)$\mathrm{AP}=\mathrm{AQ}$が成り立つときの辺$\mathrm{AB}$の長さを求めなさい.
(4)線分$\mathrm{PQ}$と辺$\mathrm{AD}$が平行になるときの辺$\mathrm{AB}$の長さを求めなさい.
首都大学東京 公立 首都大学東京 2015年 第2問
座標空間に$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(0,\ 2,\ 2)$,$\mathrm{B}(3,\ -1,\ 2)$がある.三角形$\mathrm{OAB}$の周上または内部の点$\mathrm{P}$は$\mathrm{AP}=\sqrt{2}$,$\overrightarrow{\mathrm{OP}} \perp \overrightarrow{\mathrm{AP}}$を満たしているとする.このとき,以下の問いに答えなさい.

(1)点$\mathrm{P}$の座標を求めなさい.
(2)三角形$\mathrm{OBP}$の面積を求めなさい.
(3)点$\mathrm{Q}$が点$\mathrm{A}$を中心とする半径$\sqrt{2}$の球面上を動くとき,点$\mathrm{B}$から直線$\mathrm{OQ}$に引いた垂線の長さの最小値を求めなさい.
首都大学東京 公立 首都大学東京 2015年 第3問
座標平面において楕円$\displaystyle \frac{x^2}{16}+\frac{y^2}{9}=1$を$C$とする.このとき,以下の問いに答えなさい.

(1)$C$に接する傾き$m$の直線の方程式をすべて求めなさい.
(2)すべての辺が$C$に接する長方形の$1$辺の傾きが$m$であるとする.この長方形の面積$S(m)$を求めなさい.
(3)$m$がすべての実数を動くとき,$(2)$で求めた$S(m)$の最大値を求めなさい.
大阪市立大学 公立 大阪市立大学 2015年 第1問
座標平面上に$2$点$\mathrm{P}(0,\ 2)$,$\mathrm{Q}(1,\ 0)$をとる.また,$t$を実数とし,放物線$y=(x-t)^2$を$C$とする.次の問いに答えよ.

(1)$C$が$\mathrm{P}$を通るときの$t$の値を求めよ.
(2)$C$が直線$\mathrm{PQ}$に接するときの$t$の値と接点の座標を求めよ.
(3)線分$\mathrm{PQ}$と$C$の共有点の個数が$t$によりどのように変化するか記述せよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。