タグ「直線」の検索結果

59ページ目:全2462問中581問~590問を表示)
金沢工業大学 私立 金沢工業大学 2015年 第3問
座標平面において,極方程式$r=2 \cos \theta$で表される曲線を$C$とし,$C$上において極座標が$\displaystyle \left(\sqrt{2},\ \frac{\pi}{4} \right)$,$(2,\ 0)$である点をそれぞれ$\mathrm{A}$,$\mathrm{B}$とする.また,$\mathrm{A}$,$\mathrm{B}$を通る直線を$\ell$とし,$\mathrm{A}$を中心とし,線分$\mathrm{AB}$を半径にもつ円を$D$とする.

(1)曲線$C$は直交座標において点$([ア],\ [イ])$を中心とし,半径が$[ウ]$の円を表す.
(2)直線$\ell$の極方程式は$\displaystyle r \cos \left( \theta-\displaystyle\frac{\pi}{[エ]} \right)=\sqrt{[オ]}$である.
(3)円$D$の極方程式は$\displaystyle r=[カ] \sqrt{[キ]} \cos \left( \theta-\frac{\pi}{[ク]} \right)$である.
東洋大学 私立 東洋大学 2015年 第2問
実数$k$は$0<k<2$をみたし,$xy$平面上の曲線$C$を$y=-x^2+4 (x \geqq 0)$,直線$\ell$を$y=4-k^2$とする.次の各問に答えよ.

(1)$y$軸,曲線$C$,直線$\ell$で囲まれる部分の面積を$S_1$とすると,$\displaystyle S_1=\frac{[ア]}{[イ]}k^{\mkakko{ウ}}$となる.
(2)直線$x=2$,曲線$C$,直線$\ell$で囲まれる部分の面積を$S_2$とすると,
\[ S_2=\frac{[エ]}{[オ]}k^{\mkakko{カ}}-[キ]k^{\mkakko{ク}}+\frac{[ケ]}{[コ]} \]
となる.
(3)$2$つの面積の和$S=S_1+S_2$を考える.$S$の最小値は$[サ]$である.このとき$k=[シ]$である.
日本女子大学 私立 日本女子大学 2015年 第1問
正の実数$t$に対して方程式
\[ x^2+y^2-2tx-4ty+4t^2=0 \]
で表される円を$C_t$とする.$t$がどのような値でも$C_t$と接する直線の方程式を求めよ.
日本女子大学 私立 日本女子大学 2015年 第3問
座標平面上に点$\mathrm{A}(a^3,\ b^3)$がある.ただし,$a>0$,$b>0$とする.点$\mathrm{A}$を通る直線$\ell$が$x$軸,$y$軸の正の部分と交わり,それぞれの交点を$\mathrm{P}$,$\mathrm{Q}$とする.直線$\ell$が$x$軸となす鋭角を$\theta$とし,線分$\mathrm{PQ}$の長さを$f(\theta)$とする.このとき,以下の問いに答えよ.

(1)$f(\theta)$を$a,\ b,\ \sin \theta,\ \cos \theta$を用いて表せ.
(2)$\displaystyle 0<\theta<\frac{\pi}{2}$のとき,$f(\theta)$が最小となる$\theta$の値を$\alpha$とおく.$\tan \alpha$と$f(\alpha)$をそれぞれ$a,\ b$を用いて表せ.
東洋大学 私立 東洋大学 2015年 第1問
次の各問に答えよ.

(1)$2$次方程式$3x^2+x+a=0$($a$は定数)の解が$\sin \theta,\ \cos \theta$のとき,
\[ \sin^3 \theta+\cos^3 \theta=-\frac{[アイ]}{[ウエ]} \]
である.
(2)$2^x=3$,$3^y=5$,$xyz=3$のとき,$5^z=[オ]$である.
(3)関数$f(x)=(x-2)(x-1)(x+1)(x+2)$は,$0 \leqq x \leqq 2$の範囲において,$x=[カ]$で最大値$[キ]$をとり,$\displaystyle x=\sqrt{\frac{[ク]}{[ケ]}}$で最小値$\displaystyle -\frac{[コ]}{[サ]}$をとる.
(4)直線$y=mx+4$($m$は正の定数)が円$x^2+y^2=36$によって切りとられる弦の長さが$4 \sqrt{6}$のとき,$\displaystyle m=\frac{\sqrt{[シ]}}{[ス]}$である.
(5)$x^6$を$x^2-x-3$で割ったときの余りは$[セソ]x+[タチ]$である.
北里大学 私立 北里大学 2015年 第1問
次の$[ ]$にあてはまる答を記せ.

(1)$k$を定数とするとき,方程式$\sqrt{4x-3}=x+k$の実数解の個数が$2$個となる$k$の値の範囲は$[ア]$,実数解の個数が$1$個となる$k$の値の範囲は$[イ]$である.また,曲線$y=\sqrt{4x-3}$と直線$y=x$で囲まれた部分を,$x$軸の周りに$1$回転させてできる立体の体積は$[ウ]$である.
(2)曲線$y=kx^3-1$と曲線$y=\log x$が共有点をもち,その点において共通の接線をもつとするとき,定数$k$の値は$[エ]$,共通の接線の方程式は$y=[オ]$である.
(3)数列$\{a_n\}$の初項から第$n$項までの和を$S_n$とするとき,$\{a_n\}$は
\[ a_1=1,\quad a_{n+1}=S_n+n^2+1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たす.このとき,$a_4=[カ]$であり,$\{a_n\}$の一般項は$a_n=[キ]$である.また,$S_n=[ク]$である.
(4)$\triangle \mathrm{ABC}$において,$\mathrm{AB}=3$,$\mathrm{AC}=4$,$\displaystyle \angle \mathrm{A}=\frac{\pi}{3}$である.$\triangle \mathrm{ABC}$の外心を$\mathrm{O}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおく.

(i) $\triangle \mathrm{ABC}$の外接円の半径は$[ケ]$である.
(ii) $\overrightarrow{\mathrm{AO}}$を$\overrightarrow{b}$と$\overrightarrow{c}$を用いて表すと$\overrightarrow{\mathrm{AO}}=[コ] \overrightarrow{b}+[サ] \overrightarrow{c}$である.
(iii) 直線$\mathrm{BO}$と辺$\mathrm{AC}$の交点を$\mathrm{P}$とするとき,$\mathrm{AP}:\mathrm{PC}$は$[シ]$である.

(5)$\mathrm{X}$君と$\mathrm{Y}$さんは,毎日正午に次の規則にしたがって食事をとる.

(i) 食堂$\mathrm{A}$,食堂$\mathrm{B}$,食堂$\mathrm{C}$のいずれかで食事をとる.
(ii) 食堂は前日とは異なる$2$つの食堂のうちの$1$つを無作為に選ぶ.
(iii) $2$人が同じ食堂を選んだ日は,必ず一緒に食事をとる.

$1$日目,$2$人は別々の食堂で食事をとったとする.このとき,$3$日目に初めて$2$人が一緒に食事をとる確率は$[ス]$である.また,$2$人が一緒に食事をとる$2$回目の日が$7$日目となる確率は$[セ]$である.
北里大学 私立 北里大学 2015年 第2問
$k$は定数とする.楕円$\displaystyle \frac{x^2}{4}+y^2=1$と直線$x+\sqrt{3}=ky$の共有点を$\mathrm{P}$,$\mathrm{P}^\prime$とする.また楕円の$2$つの焦点を$\mathrm{F}(\sqrt{3},\ 0)$,$\mathrm{F}^\prime (-\sqrt{3},\ 0)$とする.

(1)$\triangle \mathrm{PP}^\prime \mathrm{F}$の面積を$k$を用いて表せ.
(2)$\triangle \mathrm{PP}^\prime \mathrm{F}$の内接円の半径を最大にする$k$の値を求めよ.
北里大学 私立 北里大学 2015年 第1問
直線$4x-3y=0$と直線$x+2y-11=0$の交点$\mathrm{P}$の座標は$[ア]$である.また,$\mathrm{P}$を通り,直線$2x+5y-11=0$に垂直な直線の方程式は$y=[イ]$である.
北里大学 私立 北里大学 2015年 第3問
直線$y=-2x+b$と曲線$y=|x(x-4)|$が$x$軸上にない共有点をちょうど$3$個もつとき,定数$b$の値は$[エ]$であり,$3$個の共有点の座標は$[オ]$,$[カ]$および$[キ]$である.さらにこのとき,この曲線と直線で囲まれた図形の面積は$[ク]$である.
北里大学 私立 北里大学 2015年 第5問
$\{a_n\}$を数列とし,$l$を数直線とする.各自然数$n$に対して,座標が$a_n$であるような$l$上の点を$\mathrm{P}_n$とする.次の$2$条件が成り立っているとする.

(i) $a_1=0$,$a_2=1$である.
(ii) 点$\mathrm{P}_{n+2}$は$2$点$\mathrm{P}_n$,$\mathrm{P}_{n+1}$を結ぶ線分の中点である($n=1,\ 2,\ 3,\ \cdots$).

以下の問に答えよ.

(1)$a_3$の値は$[シ]$,$a_4$の値は$[ス]$である.
(2)$b_n=a_{n+1}-a_n$とおくとき,数列$\{b_n\}$の一般項は$b_n=[セ]$であり,数列$\{a_n\}$の一般項は$a_n=[ソ]$である.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。