タグ「直線」の検索結果

57ページ目:全2462問中561問~570問を表示)
早稲田大学 私立 早稲田大学 2015年 第2問
$2$つの直線$y=kx$と$\displaystyle y=-\frac{1}{k}x$に同時に接する円$\mathrm{O}$の中心の座標を$(a,\ b)$とおく.ただし,$k$は定数で,$0<k<1$とし,$a>0$,$b>0$とする.次の問に答えよ.

(1)$\displaystyle \frac{b}{a}$を$k$を用いて表せ.
(2)円$\mathrm{O}$の半径$r$を$a$および$k$を用いて表せ.
(3)$\displaystyle k=\frac{1}{3}$とする.円$\mathrm{O}$が点$(p,\ p)$を通るとき,中心の座標$(a,\ b)$を$p$を用いて表せ.ただし,$p$は定数で,$p>0$とする.
東京理科大学 私立 東京理科大学 2015年 第1問
$[ ]$内に$0$から$9$までの数字を$1$つずつ入れよ.

(1)$a$を正の定数とし,関数
\[ f(x)=\tan 2x \ \left( 0 \leqq x<\frac{\pi}{4} \right) \text{および} g(x)=a \cos x\ \left( 0 \leqq x \leqq \frac{\pi}{2} \right) \]
に対して,曲線$y=f(x)$と$y=g(x)$の交点の$x$座標を$\theta$とする.曲線$y=f(x)$と$x$軸,および直線$x=\theta$で囲まれた部分の面積$S$を考える.

(i) $a=[ア]$のとき,$\displaystyle \theta=\frac{\pi}{6}$である.このとき$\displaystyle S=\frac{[イ]}{[ウ]} \times \log [エ]$である.
(ii) $a=\sqrt{[オ]}$のとき,$\displaystyle S=\frac{1}{2} \log \frac{\sqrt{7}+1}{2}$である.

ただし,正の数$A$に対して,$\log A$は$A$の自然対数を表す.
(2)$1$個のサイコロを投げ,その出た目によって,点$\mathrm{P}$を座標平面上で移動させる試行を繰り返す.
点$\mathrm{P}$の出発点$(x_0,\ y_0)$を原点$(0,\ 0)$とし,$1$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_1,\ y_1)$,$2$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_2,\ y_2)$,以下同様に$k$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_k,\ y_k)$とする.
座標$(x_k,\ y_k) (k=1,\ 2,\ 3,\ \cdots)$は次のルールによって定める.
サイコロを$k$回目に投げたとき,出た目を$3$で割った商を$q$,余りを$r$として,$x_k$を次のように$q$によって定め,
\[ \left\{ \begin{array}{ll}
q=0 & \text{のとき}x_k=x_{k-1} \\
q=1 & \text{のとき}x_k=x_{k-1}+1 \\
q=2 & \text{のとき}x_k=x_{k-1}-1
\end{array} \right. \]
$y_k$を次のように$r$によって定める.
\[ \left\{ \begin{array}{ll}
r=0 & \text{のとき}y_k=y_{k-1} \\
r=1 & \text{のとき}y_k=y_{k-1}+1 \\
r=2 & \text{のとき}y_k=y_{k-1}-1
\end{array} \right. \]
ただし,サイコロを投げたとき,$1$から$6$の目がそれぞれ確率$\displaystyle \frac{1}{6}$で出るものとする.

(i) $(x_2,\ y_2)=(0,\ 0)$である確率は$\displaystyle \frac{[ア]}{[イ]}$であり,$(x_3,\ y_3)=(0,\ 0)$である確率は$\displaystyle \frac{[ウ]}{[エオ]}$である.
(ii) $x_k+y_k$が偶数である確率を$p_k$とすると,$\displaystyle p_1=\frac{[カ]}{[キ]}$であり,
\[ p_k=\frac{[ク]}{[ケ]} \cdot \left( -\frac{[コ]}{[サ]} \right)^k+\frac{[シ]}{[ス]} \quad (k=2,\ 3,\ 4,\ \cdots) \]
である.

(3)$1$辺の長さが$1$の正四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$を$2:1$の比に内分する点を$\mathrm{P}$($\mathrm{OP}:\mathrm{PA}=2:1$),辺$\mathrm{OC}$を$1:2$の比に内分する点を$\mathrm{Q}$($\mathrm{OQ}:\mathrm{QC}=1:2$),辺$\mathrm{AB}$の中点を$\mathrm{M}$とする.


(i) $\displaystyle \mathrm{MP}=\frac{\sqrt{[ア]}}{[イ]}$,$\displaystyle \mathrm{MQ}=\frac{\sqrt{[ウエ]}}{[オ]}$である.

(ii) 三角形$\mathrm{MPQ}$の面積は$\displaystyle \frac{[カ]}{[キク]} \times \sqrt{[ケコ]}$である.

(iii) 辺$\mathrm{BC}$上の$\displaystyle \mathrm{BR}=\frac{[サ]}{[シ]}$となる点$\mathrm{R}$は,$3$点$\mathrm{M}$,$\mathrm{P}$,$\mathrm{Q}$で定まる平面上にある.
東京理科大学 私立 東京理科大学 2015年 第1問
次の$[ ]$にあてはまる$0$から$9$までの数字を求めよ.

(1)座標平面上に$3$点$\mathrm{A}(-1,\ 0)$,$\mathrm{B}(1,\ 0)$,$\mathrm{C}(0,\ 1)$がある.

(i) 楕円
\[ E:\quad \frac{x^2}{4}+\frac{y^2}{b^2}=1 \quad (b>0) \]
は$2$点$\mathrm{A}$,$\mathrm{B}$を焦点としてもつとする.このとき,$b=\sqrt{[ア]}$である.
(ii) $2$点$\mathrm{A}$,$\mathrm{C}$を通る直線と,$(ⅰ)$で定めた楕円$E$の交点を$\mathrm{P}(x_0,\ y_0) (x_0>0)$とすると,
\[ x_0=-\frac{[イ]}{[ウ]}+\frac{[エ]}{[オ]} \sqrt{[カ]},\quad y_0=\frac{[キ]}{[ク]}+\frac{[ケ]}{[コ]} \sqrt{[サ]} \]
である.
(iii) $(ⅱ)$で定めた点$\mathrm{P}$に対して,$\mathrm{PB}+\mathrm{PC}=[シ]-\sqrt{[ス]}$である.$\mathrm{QB}+\mathrm{QC}=[シ]-\sqrt{[ス]}$となるような点$\mathrm{Q}(x,\ y)$の軌跡の方程式は
\[ \frac{(x-y)^2}{\alpha}+\frac{(x+y-\gamma)^2}{\beta}=1 \]
である.このとき,
\[ \alpha=\mkakko{セ}-\mkakko{ソ} \sqrt{\mkakko{タ}},\quad \beta=\mkakko{チ}-\mkakko{ツ} \sqrt{\mkakko{テ}},\quad \gamma=\mkakko{ト} \]
となる.

(2)座標平面上の原点$\mathrm{O}(0,\ 0)$,点$\mathrm{A}(2,\ 2)$,点$\mathrm{B}(k,\ 0)$を通り,軸が$y$軸に平行な放物線を$C$とする.ただし,$k>2$とする.

(i) 放物線$C$の方程式を$k$を用いて表すと,
\[ y=-\frac{[ナ]}{k-[ニ]}x^2+\frac{k}{k-[ヌ]}x \]
である.
(ii) 放物線$C$と$x$軸で囲まれた部分の面積$S$を$k$を用いて表すと,
\[ S=\frac{k^{\mkakko{ネ}}}{[ノ](k-[ハ])^{\mkakko{ヒ}}} \]
である.また,$k$を$k>2$の範囲で動かすとき,$S$の最小値は$\displaystyle \frac{[フ]}{[ヘ]}$であり,そのときの$k$の値は$k=[ホ]$である.
(iii) 放物線$C$と$x$軸で囲まれた部分を放物線$C$の軸のまわりに$1$回転してできる回転体の体積$V$を$k$を用いて表すと,
\[ V=\frac{k^{\mkakko{マ}}}{[ミ][ム](k-[メ])^{\mkakko{モ}}} \pi \]
である.また,$k$を$k>2$の範囲で動かすとき,$V$の最小値は$\displaystyle \frac{[ヤ][ユ]}{[ヨ][ラ]}\pi$であり,そのときの$k$の値は$\displaystyle k=\frac{[リ]}{[ル]}$である.
東京理科大学 私立 東京理科大学 2015年 第3問
座標平面上の放物線$\displaystyle C_1:y=2x^2+2x+\frac{1}{2}$と$\displaystyle C_2:y=-2x^2+2x+\frac{3}{2}$に対して次の問いに答えよ.なお,必要なら \ \tbox{\rule[-0.43em]{0pt}{1.6em}\hspace{0.33em} $1$\hspace{0.57em}} $(1)$の結果を使ってもよい.

(1)$C_1$上の点$\displaystyle \mathrm{A}(t,\ 2t^2+2t+\frac{1}{2})$と$C_2$上の点$\displaystyle \mathrm{B}(s,\ -2s^2+2s+\frac{3}{2})$に対し,$C_1$の点$\mathrm{A}$における接線の傾きと$C_2$の点$\mathrm{B}$における接線の傾きが等しくなるための必要十分条件を$t$と$s$の式で表せ.
(2)$(1)$の条件を満たすようなどんな実数$t,\ s$に対しても,直線$\mathrm{AB}$はある共通の点$\mathrm{M}$を通る.$\mathrm{M}$の座標を求めよ.
(3)$\mathrm{M}$を$(2)$で求めた点とする.$C_1$とただ一つの共有点をもつような,$\mathrm{M}$を中心とする円に対して,円の半径と共有点の$x$座標を求めよ.
(4)$\mathrm{M}$を$(2)$で求めた点とする.$C_2$とただ一つの共有点をもつような,$\mathrm{M}$を中心とする円に対して,円の半径と共有点の$x$座標を求めよ.
(5)$(1)$の条件を満たすような実数$t,\ s$に対して,線分$\mathrm{AB}$の長さがとり得る値の最小値を求めよ.
早稲田大学 私立 早稲田大学 2015年 第5問
直線
\[ \ell:x \sin \theta+y \cos \theta=1 \quad \left( 0<\theta<\frac{\pi}{2} \right) \]
に接する$4$つの円を考える.

$x \sin \theta+y \cos \theta<1$の領域で$2$つの円は互いに接しており,そのうち$1$つの円は直線$\ell$と$x$軸に,もう一方の円は直線$\ell$と$y$軸に接している.これらの円の半径はいずれも$r_1$である.このとき
\[ r_1=\frac{1}{[ソ]t^2+[タ]t} \quad (\text{ただし}t=\sin \theta+\cos \theta) \]
となる.
残りの$2$つの円は,$x \sin \theta+y \cos \theta>1$の領域で互いに接しており,そのうち$1$つの円は直線$\ell$と$x$軸に,もう一方の円は直線$\ell$と$y$軸に接している.これらの円の半径はいずれも$r_2$である.このとき
\[ r_2=\frac{1}{[チ]t^2+[ツ]t+[テ]} \quad (\text{ただし}t=\sin \theta+\cos \theta) \]
となる.
したがって
\[ [ト]<\frac{r_1}{r_2} \leqq \sqrt{[ナ]}+[ニ] \]
である.
早稲田大学 私立 早稲田大学 2015年 第5問
曲線$C:y=x^3$上に,次のようにして点$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$,$\cdots$,$\mathrm{P}_n$,$\cdots$をとる.

(i) $\mathrm{P}_1$は$C$上の与えられた点とする.
(ii) $\mathrm{P}_n$を通り,$\mathrm{P}_n$とは異なる点で$C$と接する直線が$1$つだけ存在するとき,その直線を$\ell_n$とし,$\ell_n$と$C$との接点を$\mathrm{P}_{n+1}$とする.もしこのような直線$\ell_n$が存在しない場合には$\mathrm{P}_{n+1}$は$\mathrm{P}_n$と同一の点とする.

点$\mathrm{P}_n$の$x$座標を$x_n$とするとき,次の問に答えよ.


(1)直線$\ell_n$が存在する場合$\displaystyle x_{n+1}=\frac{[ト]}{[ナ]}x_n$である.

(2)$\mathrm{P}_1$を原点とするとき$\displaystyle \lim_{n \to \infty}x_n=[ニ]$である.
(3)$\mathrm{P}_1$を点$(2,\ 8)$とするとき$\displaystyle \lim_{n \to \infty}x_n=[ヌ]$である.
早稲田大学 私立 早稲田大学 2015年 第1問
次の問いに答えよ.

(1)$\cos 3 \theta$を$\cos \theta$のみの式で表せ.
(2)次の$(ⅰ),\ (ⅱ)$に答えよ.

(i) $3$次関数$\displaystyle f(x)=x^3-\frac{3}{4}x$について増減表を書き,$y=f(x)$のグラフの概形を描け.
(ii) $y=f(x)$のグラフと直線$y=k$が共有点を$2$つまたは$3$つもつような定数$k$の値の範囲を求めよ.
また,$k$がこの範囲を動くとき,共有点の$x$座標のとる値の範囲を求めよ.

(3)$3$次方程式$\displaystyle x^3-\frac{3}{4}x-\frac{1}{8}=0$の解を$x=\cos \theta (0 \leqq \theta \leqq \pi)$とおくとき,$\theta$の値を求めよ.
立教大学 私立 立教大学 2015年 第3問
座標平面上の曲線$C:y=x^3+x^2+ax$は,直線$\ell_1:y=-x$と原点$\mathrm{O}(0,\ 0)$で接している.このとき,次の問に答えよ.

(1)$a$の値を求めよ.
(2)直線$\ell_1$と$C$の共有点で$\mathrm{O}$以外の点を$\mathrm{P}$とする.点$\mathrm{P}$の座標を求めよ.
(3)点$\mathrm{P}$を通る$C$の接線$\ell_2$と$C$の共有点で点$\mathrm{P}$以外の点を$\mathrm{Q}$とする.点$\mathrm{Q}$の座標を求めよ.
(4)点$\mathrm{Q}$を通る$C$の接線$\ell_3$と$C$の共有点で点$\mathrm{Q}$以外の点を$\mathrm{R}$とする.点$\mathrm{R}$の座標を求めよ.
(5)三角形$\mathrm{PQR}$の面積を求めよ.
中央大学 私立 中央大学 2015年 第1問
次の各問いに答えよ.

(1)$\displaystyle x=\frac{1-\sqrt{3}}{2}$のとき,$\displaystyle x^2+\frac{1}{x^2}$の値を求めよ.ただし,分母は有理化して答えよ.
(2)初項から第$3$項までの和が$-63$,初項から第$6$項までの和が$-4095$である等比数列の初項と公比を求めよ.
(3)$5$個の数字$0,\ 1,\ 2,\ 3,\ 4$を$1$回ずつ使って$5$桁の数を作る.このとき,$31402$は小さい方から数えて何番目の数か.
(4)次の方程式を解け.
\[ 2 \log_2 x=\log_2 (x+4)+1 \]
(5)直線$y=3x+a$は曲線$y=x^3$に点$\mathrm{A}$で接する.ただし,$a>0$とする.原点を$\mathrm{O}$とし,直線と曲線の接点以外の共有点を$\mathrm{B}$とするとき,$\triangle \mathrm{OAB}$の面積を求めよ.
(6)定積分$\displaystyle \int_{-1}^2 |x-1| \, dx$の値を求めよ.
東北学院大学 私立 東北学院大学 2015年 第3問
放物線$C:y=x^2-x$について以下の問いに答えよ.ただし$a>0$とする.

(1)点$(0,\ -a)$を通る$C$の$2$つの接線の方程式およびそれぞれの接点の座標を求めよ.
(2)$(1)$で求めた$2$つの接点を通る直線および$C$で囲まれた部分の面積を求めよ.
(3)$(1)$で求めた$2$つの接線および$C$で囲まれた部分の面積を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。