タグ「直線」の検索結果

54ページ目:全2462問中531問~540問を表示)
立教大学 私立 立教大学 2015年 第1問
次の空欄$[ア]$~$[シ]$に当てはまる数または式を記入せよ.

(1)式$(2x+3y+z)(x+2y+3z)(3x+y+2z)$を展開したときの$xyz$の係数は$[ア]$である.
(2)実数$x,\ y$が$\displaystyle \frac{i}{1+xi}+\frac{x+2}{y+i}=0$を満たすとき,$x=[イ]$,$y=[ウ]$である.ただし,$i$は虚数単位とする.
(3)定積分$\displaystyle \int_{-2}^2 x |x-1| \, dx$を求めると$[エ]$である.
(4)$2^{\frac{1}{2}},\ 3^{\frac{1}{3}},\ 5^{\frac{1}{5}}$の大小関係は$[オ]<[カ]<[キ]$である.
(5)不等式$\displaystyle (\log_2 x)^2+\log_2 \frac{x}{2}<1$を満たす$x$の範囲は$[ク]$である.
(6)半径$1$の円に内接する正$n$角形の周の長さは$[ケ]$である.
(7)座標空間における$3$点$\mathrm{A}(1,\ -1,\ 5)$,$\mathrm{B}(4,\ 5,\ 2)$,$\mathrm{C}(a,\ b,\ 0)$が一直線上にあるとき,$a=[コ]$,$b=[サ]$である.
(8)円$x^2+y^2=1$と直線$y=kx+2 (k>0)$が接するとき,その接点の座標は$[シ]$である.
立教大学 私立 立教大学 2015年 第2問
$a$と$b$は$1$以上$5$以下の自然数とし,放物線$C:y=-x^2+ax-b$を定める.このとき,次の問に答えよ.

(1)放物線$C$が$x$軸と相異なる$2$点で交わるような$(a,\ b)$の組は何通りあるか求めよ.
(2)放物線$C$が$x$軸と相異なる$2$点で交わり,それらの$x$座標がともに整数であるような$(a,\ b)$の組は何通りあるか求めよ.
(3)$(2)$のとき,放物線$C$と$x$軸の$2$つの交点の間の距離の最大値と,そのときの$(a,\ b)$の組を求めよ.
(4)$k$は自然数であり,直線$y=kx+1$は放物線$C$と接している.このときの$k$の最大値と,$k$を最大にする$(a,\ b)$の組を求めよ.
自治医科大学 私立 自治医科大学 2015年 第6問
$2$つの放物線$C_1:y=x^2$,$\displaystyle C_2:y=x^2-ax+a+\frac{a^3}{2}$($a$は正の実数)について考える.直線$L$は$C_1$,$C_2$にそれぞれ点$\mathrm{A}$,$\mathrm{B}$で接する.点$\mathrm{A}$,$\mathrm{B}$の$x$座標をそれぞれ$p,\ q$としたとき,$p+q-a^2$の値を求めよ.
自治医科大学 私立 自治医科大学 2015年 第9問
円$C:x^2+y^2=20$と円$C$の外部に存在する点$\mathrm{R}(8,\ a)$($a$は負の実数)について考える.点$\mathrm{R}$を通り円$C$に接する直線は$2$つ存在する.この$2$つの直線が円$C$と接する点を$\mathrm{P}$,$\mathrm{Q}$とする(点$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$p,\ q$とする).$\angle \mathrm{PRQ}={60}^\circ$となるとき,$|a+p+q|$の値を求めよ.
自治医科大学 私立 自治医科大学 2015年 第10問
楕円$\displaystyle C:\frac{x^2}{9}+\frac{y^2}{4}=1$と直線$L:x-2y+10=0$について考える.楕円$C$上の点$\mathrm{P}$から直線$L$に下ろした垂線と直線$L$の交点を$\mathrm{Q}$とする.線分$\mathrm{PQ}$の最大値を$M$,最小値を$m$とするとき,$\displaystyle \frac{M}{m}$の値を求めよ.
慶應義塾大学 私立 慶應義塾大学 2015年 第2問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

数直線上の点の集合$S=\{-1,\ 0,\ 1\}$を考える.球が$2$個用意されており,$S$の各点上には,$2$個まで球を置くことができるとする.$S$内に置かれた球に対する次の操作$\mathrm{T}$を考える.
\begin{screen}
{\bf 操作$\mathrm{T}$}

\mon[$(\mathrm{T}1)$] $S$内に球が$1$個だけ置かれている場合は, その球に対して次の操作$\mathrm{A}$を行う.
\begin{screen}
{\bf 操作$\mathrm{A}$}

\mon[$(\mathrm{A}1)$] 球が点$0$上に置かれている場合はその球を確率$\displaystyle\frac{1}{3}$で$S$内から取り除き,確率$\displaystyle\frac{1}{3}$ずつで点$-1$または点$1$の上に移す.
\mon[$(\mathrm{A}2)$] 球が点$-1$または点$1$の上に置かれている場合はその球を必ず点$0$の上に移す.

\end{screen}
\mon[$(\mathrm{T}2)$] $S$内に球が$2$個置かれている場合は,どちらか$1$個の球を等しい確率で選び,その選ばれた球に対して操作$\mathrm{A}$を行う.

\end{screen}
いま,球が$2$個とも点$0$上に置かれている状態から始め,操作$\mathrm{T}$を繰り返し行う.ただし,$S$内に球がなくなった場合は操作を行うのをやめる.以下,$n,\ m$を自然数とする.

(1)操作$\mathrm{T}$を$n$回繰り返し終えたとき,球が$2$個とも点$0$上に置かれている確率を$p_n$とし,点$-1$と点$0$の上に$1$個ずつ置かれているかまたは点$0$と点$1$の上に$1$個ずつ置かれている確率を$q_n$とする.

\mon[$(1$-$1)$] $n \geqq 2$に対し,$p_n=[あ]q_{n-1}$である.
\mon[$(1$-$2)$] $q_1=[い]$である.一般に$q_{2m}=0$であり,$q_{2m-1}$を$m$の式で表すと$q_{2m-1}=[う]$である.

(2)操作$\mathrm{T}$を$n$回繰り返し終えたとき,$S$内に球が$1$個だけあり,かつそれが点$0$上に置かれている確率を$r_n$,点$-1$または点$1$の上に置かれている確率を$s_n$とする.

\mon[$(2$-$1)$] $n \geqq 2$に対し,
\[ \begin{array}{l}
r_n=[え]s_{n-1}+[お]p_{n-1} \\
s_n=[か]r_{n-1}+[き]q_{n-1}
\end{array} \]
である.
\mon[$(2$-$2)$] 一般に$r_{2m}=0$であり,$r_{2m-1}$を$m$の式で表すと$r_{2m-1}=[く]$である.
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
次の問いに答えよ.

(1)次の問いに答えよ.

(i) $f(x,\ y)=2x^2+11xy+12y^2-5y-2$を因数分解すると,
\[ \left(x+[$1$]y+[$2$] \right) \left([$3$]x+[$4$]y-[$5$] \right) \]
である.
(ii) $f(x,\ y)=56$を満たす自然数$x,\ y$の値は,$x=[$6$]$,$y=[$7$]$である.

(2)$xy$平面上の$2$直線$y=x+4 \sin \theta+1$,$y=-x+4 \cos \theta-3$の交点を$\mathrm{P}$とおく.ただし,$\theta$は実数とする.

(i) $\displaystyle \theta=\frac{\pi}{12}$のとき,点$\mathrm{P}$の座標は$\displaystyle \left( \sqrt{[$8$]}-[$9$],\ \sqrt{[$10$]}-[$11$] \right)$である.
(ii) $\theta$が実数全体を動くとき,点$\mathrm{P}$の軌跡は
\[ x^2+y^2+[$12$]x+[$13$]y-[$14$]=0 \]
である.

(3)$2$次関数$f(x)$は,すべての実数$x$について
\[ \int_0^x f(t) \, dt=xf(x)-\frac{4}{3}x^3+ax^2 \]
を満たす.ただし,$a$は実数である.また,$f(0)=a^2-a-6$である.このとき,

(i) $f(x)=[$15$]x^2-[$16$]ax+\left( a+[$17$] \right) \left( a-[$18$] \right)$である.
(ii) 方程式$f(x)=0$が少なくとも$1$つの正の実数解をもつような$a$の値の範囲は
\[ [$19$][$20$]<a \leqq [$21$]+\sqrt{[$22$][$23$]} \]
である.

(4)$\{a_n\}$は,数字の$1$と$2$だけで作ることのできる自然数を小さい順に並べた数列である.
\[ \{a_n\} : \ 1,\ 2,\ 11,\ 12,\ 21,\ 22,\ 111,\ \cdots \]
このとき,

(i) $a_{10}=[$24$][$25$][$26$]$,$a_{15}=\kakkofour{$27$}{$28$}{$29$}{$30$}$である.
(ii) $\displaystyle \sum_{k=7}^{14} a_k=\kakkofour{$31$}{$32$}{$33$}{$34$}$である.
(iii) $\{a_n\}$のうち,$m$桁である項の総和は$\displaystyle \frac{{[$35$]}^{m-1} \left\{ \left([$36$][$37$] \right)^m-[$38$] \right\}}{[$39$]}$である.
慶應義塾大学 私立 慶應義塾大学 2015年 第2問
$xy$平面上に放物線$\displaystyle P:y=\frac{1}{4}x^2$と直線$\displaystyle \ell:y=\frac{1}{2}x+\frac{1}{4}(a^2-1)$がある.ただし,$a$は$0<a<\sqrt{33}$を満たす実数である.$P$と$\ell$は異なる$2$点$\mathrm{A}$,$\mathrm{B}$で交わり,$\mathrm{A}$,$\mathrm{B}$の$x$座標をそれぞれ$x_A$,$x_B$とおくと,$x_A<x_B$である.

次に,線分$\mathrm{AB}$を$1$辺とし,線分$\mathrm{CD}$が$(0,\ 8)$を通る長方形$\mathrm{ABDC}$をおく.長方形$\mathrm{ABDC}$の面積を$S(a)$とする.このとき,

(1)$2$点$\mathrm{C}$,$\mathrm{D}$を結ぶ直線の傾きは$\displaystyle \frac{[$40$]}{[$41$]}$であり,線分$\mathrm{AB}$の長さを$a$を用いて表すと$\sqrt{[$42$]}a$である.
(2)$S(a)$を$a$の式で表すと
\[ S(a)=\frac{[$43$][$44$]}{[$45$]}a^3+\frac{[$46$][$47$]}{[$48$]}a \]
である.
また,$S(a)$が最大値をとるとき,$a$の値は$\sqrt{[$49$][$50$]}$である.
(3)放物線$P$と直線$\ell$で囲まれた部分の面積が,$S(a)$の$3$倍であるとき,$a$の値は$[$51$] \sqrt{[$52$]}$である.
慶應義塾大学 私立 慶應義塾大学 2015年 第3問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

$p,\ q$を正の実数として,曲線$C$を$\displaystyle x^{\frac{1}{p}}+y^{\frac{1}{q}}=1 (0 \leqq x \leqq 1,\ 0 \leqq y \leqq 1)$により定義する.

(1)曲線$C$の方程式を$y$について解いて得られる関数を$y=f(x) (0 \leqq x \leqq 1)$とおく.$y=f(x)$のグラフが$0<x<1$において変曲点をもつためには$p,\ q$が条件$[あ]$を満たすことが必要十分である.
(2)曲線$C$と$x$軸,$y$軸で囲まれた図形の面積を$S(p,\ q)$とすると,$S(1,\ q)=[い]$であり,$p>1$ならば$S(p,\ q)$と$S(p-1,\ q+1)$の間には$S(p,\ q)=[う]S(p-1,\ q+1)$の関係がある.$p,\ q$がともに自然数であるときに$S(p,\ q)$を$p,\ q$の式で表すと$S(p,\ q)=[え]$である.
(3)$p=q=3$のとき,直線$\ell:x+y=\alpha$が曲線$C$と$2$点を共有するための必要十分条件は$[お]<\alpha \leqq 1$である.この条件が成り立つとき,直線$\ell$と曲線$C$の交点$\mathrm{P}$,$\mathrm{Q}$の$x$座標を$x_1,\ x_2$とすると$\displaystyle x_1^{\frac{1}{3}}x_2^{\frac{1}{3}}=[か]$かつ$\displaystyle \left( x_1^{\frac{1}{3}}-x_2^{\frac{1}{3}} \right)^2=[き]$である.さらに$\alpha_0=[お]$とおくとき$\displaystyle \lim_{\alpha \to \alpha_0+0} \frac{\mathrm{PQ}^2}{\alpha-\alpha_0}=[く]$が成り立つ.
慶應義塾大学 私立 慶應義塾大学 2015年 第2問
次の問いに答えよ.

(1)座標平面上の原点$\mathrm{O}(0,\ 0)$と点$\mathrm{A}(0,\ 2)$を通る$2$円
\[ C_1:(x+1)^2+(y-1)^2=2,\quad C_2:(x-2)^2+(y-1)^2=5 \]
が与えられている.原点$\mathrm{O}$を通る直線$L$と$C_1$,$C_2$との交点($\neq \mathrm{O}$)をそれぞれ$\mathrm{D}$,$\mathrm{E}$とする.$\mathrm{D} \neq \mathrm{E}$のとき,線分$\mathrm{DE}$の内点$\mathrm{P}$を$\mathrm{DP}:\mathrm{PE}=3:1$となるようにとる.$\mathrm{D}=\mathrm{E}$のとき,$\mathrm{P}=\mathrm{D}$とする.直線$L$を原点を中心に回転させると,点$\mathrm{P}$は
\[ \left( \frac{[$13$][$14$]}{[$15$][$16$]},\ [$17$][$18$] \right) \]
を中心とする円周上にある.
(2)$\displaystyle \frac{\pi}{12}$における$\sin,\ \cos$の値は
\[ \begin{array}{l}
\displaystyle\sin \frac{\pi}{12}=\frac{\sqrt{[$19$][$20$]}-\sqrt{[$21$][$22$]}}{4} \\
\displaystyle\cos \frac{\pi}{12}=\frac{\sqrt{[$19$][$20$]}+\sqrt{[$21$][$22$]}}{4} \phantom{\displaystyle\frac{\frac{[ ]^2}{2}}{2}}
\end{array} \]
である.これを用いて,$0<x<\pi$の範囲で方程式
\[ \frac{\sqrt{3}+1}{\cos x}-\frac{\sqrt{3}-1}{\sin x}-4 \sqrt{2}=0 \]
を解けば
\[ x=\frac{[$23$][$24$]}{[$25$][$26$]}\pi \]
を得る.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。