タグ「直線」の検索結果

40ページ目:全2462問中391問~400問を表示)
千葉大学 国立 千葉大学 2015年 第3問
双曲線$x^2-y^2=1 \cdots ①$の漸近線$y=x \cdots ②$上の点$\mathrm{P}_0:(a_0,\ a_0)$(ただし$a_0>0$)を通る双曲線$①$の接線を考え,接点を$\mathrm{Q}_1$とする.$\mathrm{Q}_1$を通り漸近線$②$と垂直に交わる直線と,漸近線$②$との交点を$\mathrm{P}_1:(a_1,\ a_1)$とする.次に$\mathrm{P}_1$を通る双曲線$①$の接線の接点を$\mathrm{Q}_2$,$\mathrm{Q}_2$を通り漸近線$②$と垂直に交わる直線と,漸近線$②$との交点を$\mathrm{P}_2:(a_2,\ a_2)$とする.この手続きを繰り返して同様にして点$\mathrm{P}_n:(a_n,\ a_n)$,$\mathrm{Q}_n$を定義していく.

(1)$\mathrm{Q}_n$の座標を$a_n$を用いて表せ.
(2)$a_n$を$a_0$を用いて表せ.
(3)$\triangle \mathrm{P}_n \mathrm{Q}_n \mathrm{P}_{n-1}$の面積を求めよ.
防衛医科大学校 国立 防衛医科大学校 2015年 第3問
座標平面上の$3$点$\mathrm{A}(0,\ \sqrt{2})$,$\mathrm{B}(2 \sqrt{6},\ \sqrt{2})$,$\mathrm{C}(\sqrt{6},\ 3 \sqrt{2})$に対して,点$\mathrm{P}(p,\ q)$は線分$\mathrm{AP}$,$\mathrm{BP}$の垂直二等分線が点$\mathrm{C}$で交わるという条件を満たす点とする.ただし,$q>\sqrt{2}$である.また,点$\mathrm{A}$から直線$\mathrm{BP}$へ下ろした垂線と点$\mathrm{B}$から直線$\mathrm{AP}$へ下ろした垂線が点$\mathrm{T}(s,\ t)$で交わっているとする.このとき,以下の問に答えよ.

(1)点$\mathrm{P}$の軌跡を求め,図示せよ.
(2)点$\mathrm{T}$の軌跡を求め,図示せよ.
小樽商科大学 国立 小樽商科大学 2015年 第5問
曲線$C:y=\log x$上の点$\displaystyle \left( \frac{3}{2},\ \log \frac{3}{2} \right)$における$C$の接線と直線$x=1$,$x=3$,曲線$C$で囲まれた部分の面積を求めよ.ただし,$\log x$は$x$の自然対数とする.
佐賀大学 国立 佐賀大学 2015年 第2問
$a,\ b,\ c$を正の定数とし,$3$点$\mathrm{A}(a,\ 0,\ 0)$,$\mathrm{B}(0,\ b,\ 0)$,$\mathrm{C}(0,\ 0,\ c)$の定める平面を$\alpha$とする.また,原点を$\mathrm{O}$とし,平面$\alpha$に垂直な単位ベクトルを$\overrightarrow{n}=(n_1,\ n_2,\ n_3)$とする.ただし,$n_1>0$とする.このとき,次の問に答えよ.

(1)$\overrightarrow{n}$を求めよ.
(2)平面$\alpha$上に点$\mathrm{H}$があり,直線$\mathrm{OH}$は$\alpha$に垂直であるとする.$\overrightarrow{\mathrm{OH}}$および$|\overrightarrow{\mathrm{OH}}|$を求めよ.
(3)$\triangle \mathrm{ABC}$の面積を$S$,$\triangle \mathrm{OBC}$の面積を$S_1$とする.四面体$\mathrm{OABC}$の体積を考えることにより,$S_1=n_1S$であることを示せ.
弘前大学 国立 弘前大学 2015年 第4問
$xy$平面において,曲線$C:x^2+y^2=1 (x \geqq 0,\ y \geqq 0)$,および直線$\ell:y=(\tan \theta)x$を考える.ただし,$\theta$は$\displaystyle 0<\theta<\frac{\pi}{2}$をみたす定数とする.$S_1,\ S_2,\ S_3$を次によって定める.

$S_1:$ $y$軸,曲線$C$,直線$\ell$で囲まれた部分の面積
$S_2:$ $x$軸,曲線$C$,直線$x=\cos \theta$で囲まれた部分の面積
$S_3:$ $x$軸,直線$\ell$,直線$x=\cos \theta$で囲まれた部分の面積

次の問いに答えよ.

(1)$S_1$および$S_2$を$\theta$を用いて表せ.
(2)$S_1=S_2$となる$\theta$が存在することを示せ.
(3)$S_1=S_2=S_3$となる$\theta$は存在しないことを示せ.
愛媛大学 国立 愛媛大学 2015年 第4問
$n$を自然数とし,曲線$\displaystyle y=n \sin \frac{x}{n}$と円$x^2+y^2=1$の第$1$象限における交点の座標を$(p_n,\ q_n)$とする.

(1)$x>0$のとき,不等式$\displaystyle n \sin \frac{x}{n}<x$が成り立つことを示せ.
(2)不等式$\displaystyle p_n>\frac{1}{\sqrt{2}}$が成り立つことを示せ.
(3)$0 \leqq x \leqq 1$のとき,不等式
\[ (*) \quad \left( n \sin \frac{1}{n} \right) x \leqq n \sin \frac{x}{n} \]
が成り立つことを利用して,次の$(ⅰ)$,$(ⅱ)$に答えよ.

(i) 不等式$\displaystyle p_n \leqq \frac{1}{\sqrt{1+n^2 \sin^2 \displaystyle\frac{1}{n}}}$が成り立つことを示せ.
(ii) $x$軸,直線$x=p_n$,および曲線$\displaystyle y=n \sin \frac{x}{n} (0 \leqq x \leqq p_n)$で囲まれた領域の面積を$S_n$とするとき,$S_n$を$p_n$を用いて表せ.また,$\displaystyle \lim_{n \to \infty} S_n$を求めよ.

(4)$0 \leqq x \leqq 1$のとき,$(3)$の不等式$(*)$が成り立つことを示せ.
愛媛大学 国立 愛媛大学 2015年 第3問
$n$を自然数とし,曲線$\displaystyle y=n \sin \frac{x}{n}$と円$x^2+y^2=1$の第$1$象限における交点の座標を$(p_n,\ q_n)$とする.

(1)$x>0$のとき,不等式$\displaystyle n \sin \frac{x}{n}<x$が成り立つことを示せ.
(2)不等式$\displaystyle p_n>\frac{1}{\sqrt{2}}$が成り立つことを示せ.
(3)$0 \leqq x \leqq 1$のとき,不等式
\[ (*) \quad \left( n \sin \frac{1}{n} \right) x \leqq n \sin \frac{x}{n} \]
が成り立つことを利用して,次の$(ⅰ)$,$(ⅱ)$に答えよ.

(i) 不等式$\displaystyle p_n \leqq \frac{1}{\sqrt{1+n^2 \sin^2 \displaystyle\frac{1}{n}}}$が成り立つことを示せ.
(ii) $x$軸,直線$x=p_n$,および曲線$\displaystyle y=n \sin \frac{x}{n} (0 \leqq x \leqq p_n)$で囲まれた領域の面積を$S_n$とするとき,$S_n$を$p_n$を用いて表せ.また,$\displaystyle \lim_{n \to \infty} S_n$を求めよ.

(4)$0 \leqq x \leqq 1$のとき,$(3)$の不等式$(*)$が成り立つことを示せ.
愛媛大学 国立 愛媛大学 2015年 第2問
原点を$\mathrm{O}$とする座標平面上に$3$点$\mathrm{A}(0,\ 3)$,$\mathrm{B}(4,\ 0)$,$\mathrm{C}(4,\ 4)$を頂点とする三角形$\mathrm{ABC}$があり,線分$\mathrm{AB}$上に点$\mathrm{P}$がある.ただし,$\mathrm{P}$は線分$\mathrm{AB}$の端点にないものとする.直線$\mathrm{OP}$によって三角形$\mathrm{ABC}$を$2$つの図形に分けたとき,点$\mathrm{A}$を含む図形の面積を$S$とする.線分$\mathrm{AP}$の長さを$t$とするとき,次の問いに答えよ.

(1)$t$の値の範囲を求め,点$\mathrm{P}$の座標を$t$を用いて表せ.
(2)直線$\mathrm{OP}$が線分$\mathrm{AC}$と共有点をもつような$t$の値の範囲を求め,その共有点の座標を$t$を用いて表せ.
(3)$S$を$t$を用いて表せ.
福岡教育大学 国立 福岡教育大学 2015年 第3問
平面上に$\triangle \mathrm{ABC}$と点$\mathrm{O}$がある.$\triangle \mathrm{ABC}$の内部に点$\mathrm{D}$があって,三角形の面積比が
\[ \triangle \mathrm{DBC}:\triangle \mathrm{DCA}:\triangle \mathrm{DAB}=p:q:r \]
であるとする.次の問いに答えよ.

(1)直線$\mathrm{AD}$と辺$\mathrm{BC}$の交点を$\mathrm{S}$,直線$\mathrm{BD}$と辺$\mathrm{AC}$の交点を$\mathrm{T}$とするとき,$\mathrm{BS}:\mathrm{SC}$および$\mathrm{CT}:\mathrm{TA}$を$p,\ q,\ r$を用いて表せ.

(2)$\displaystyle \overrightarrow{\mathrm{OD}}=\frac{p \overrightarrow{\mathrm{OA}}+q \overrightarrow{\mathrm{OB}}+r \overrightarrow{\mathrm{OC}}}{p+q+r}$となることを示せ.
東京海洋大学 国立 東京海洋大学 2015年 第2問
$\triangle \mathrm{OAB}$に対して,辺$\mathrm{OA}$の中点を$\mathrm{L}$,辺$\mathrm{AB}$の中点を$\mathrm{M}$,線分$\mathrm{OM}$を$1:2$に内分する点を$\mathrm{P}$とする.また,直線$\mathrm{OB}$と直線$\mathrm{AP}$の交点を$\mathrm{N}$,直線$\mathrm{OM}$と直線$\mathrm{BL}$の交点を$\mathrm{Q}$,直線$\mathrm{AN}$と直線$\mathrm{BL}$の交点を$\mathrm{R}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\mathrm{OB}=\overrightarrow{b}$とおく.

(1)$\overrightarrow{\mathrm{OP}}$および$\overrightarrow{\mathrm{ON}}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OQ}}$および$\overrightarrow{\mathrm{OR}}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
(3)線分の長さの比$\mathrm{BQ}:\mathrm{QR}:\mathrm{RL}$を求めよ.
(4)$\triangle \mathrm{OAB}$の面積を$S_1$,$\triangle \mathrm{PQR}$の面積を$S_2$とするとき,$\displaystyle \frac{S_2}{S_1}$を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。