タグ「直線」の検索結果

36ページ目:全2462問中351問~360問を表示)
埼玉大学 国立 埼玉大学 2015年 第3問
$f(x)=x^4-2x^3$とし,曲線$C:y=f(x)$上の点$\mathrm{P}(\alpha,\ f(\alpha))$における接線を$\ell$とする.次の問いに答えよ.

(1)$\ell$の方程式を求めよ.
(2)$\alpha=1$のとき,$\ell$と$C$との$\mathrm{P}$以外の共有点をすべて求めよ.
(3)$\ell$と$C$が$\mathrm{P}$以外に$2$つの共有点を持つような$\alpha$の範囲を求めよ.
(4)$\ell$と$C$が$\mathrm{P}$以外の共有点$(\beta,\ f(\beta))$,$(\gamma,\ f(\gamma)) (\beta<\gamma)$を持つとする.このとき,$\gamma-\beta$が最大となる$\alpha$の値を求めよ.
静岡大学 国立 静岡大学 2015年 第1問
関数$f(x)=x^3-9x^2+24x$について,次の問いに答えよ.

(1)$f(x)$の増減,極値を調べて,グラフの概形をかけ.
(2)$k$を定数とするとき,曲線$y=f(x)$と直線$y=kx$の共有点の個数を調べよ.
(3)曲線$y=f(x)$と直線$y=6x$で囲まれた図形の面積$S$を求めよ.
静岡大学 国立 静岡大学 2015年 第2問
$\triangle \mathrm{ABC}$において,$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおき,$|\overrightarrow{b}|=1$,$|\overrightarrow{c}|=\sqrt{3}$,$\overrightarrow{b} \cdot \overrightarrow{c}=1$であるとする.辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{D}$,線分$\mathrm{AD}$に関して$\mathrm{B}$と対称な点を$\mathrm{E}$,直線$\mathrm{AE}$と辺$\mathrm{BC}$の交点を$\mathrm{F}$とする.このとき,次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$の面積$S_1$を求めよ.
(2)$\overrightarrow{\mathrm{AE}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)$\overrightarrow{\mathrm{AF}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(4)$\mathrm{DF}:\mathrm{BC}$を求めよ.
(5)$\triangle \mathrm{DEF}$の面積$S_2$を求めよ.
静岡大学 国立 静岡大学 2015年 第1問
$\triangle \mathrm{ABC}$において,$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおき,$|\overrightarrow{b}|=1$,$|\overrightarrow{c}|=\sqrt{3}$,$\overrightarrow{b} \cdot \overrightarrow{c}=1$であるとする.辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{D}$,線分$\mathrm{AD}$に関して$\mathrm{B}$と対称な点を$\mathrm{E}$,直線$\mathrm{AE}$と辺$\mathrm{BC}$の交点を$\mathrm{F}$とする.このとき,次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$の面積$S_1$を求めよ.
(2)$\overrightarrow{\mathrm{AE}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)$\overrightarrow{\mathrm{AF}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(4)$\mathrm{DF}:\mathrm{BC}$を求めよ.
(5)$\triangle \mathrm{DEF}$の面積$S_2$を求めよ.
静岡大学 国立 静岡大学 2015年 第2問
$\triangle \mathrm{ABC}$において,$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおき,$|\overrightarrow{b}|=1$,$|\overrightarrow{c}|=\sqrt{3}$,$\overrightarrow{b} \cdot \overrightarrow{c}=1$であるとする.辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{D}$,線分$\mathrm{AD}$に関して$\mathrm{B}$と対称な点を$\mathrm{E}$,直線$\mathrm{AE}$と辺$\mathrm{BC}$の交点を$\mathrm{F}$とする.このとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AE}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)$\overrightarrow{\mathrm{AF}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)$\mathrm{DF}:\mathrm{BC}$を求めよ.
静岡大学 国立 静岡大学 2015年 第3問
関数$f(x)=x^3-9x^2+24x$について,次の問いに答えよ.

(1)$f(x)$の増減,極値を調べて,グラフの概形をかけ.
(2)$k$を定数とするとき,曲線$y=f(x)$と直線$y=kx$の共有点の個数を調べよ.
熊本大学 国立 熊本大学 2015年 第1問
$a$を実数とする.曲線$C_1:y=x^2$上の点$(a,\ a^2)$における接線を$\ell$とする.曲線$C_2$を$y=x^2-1$とする.以下の問いに答えよ.

(1)$\ell$と$C_2$とで囲まれた部分の面積を求めよ.
(2)$\displaystyle a=\frac{1}{\sqrt{2}}$とする.曲線$C_3:y=-x^2+1$と$C_2$とで囲まれた部分は$\ell$によって$2$つの部分に分けられる.これらのうち,点$\displaystyle \left( 0,\ \frac{1}{2} \right)$を含む部分の面積を求めよ.
熊本大学 国立 熊本大学 2015年 第2問
座標空間内の$3$点$\mathrm{A}(1,\ 1,\ 1)$,$\mathrm{B}(3,\ 0,\ 1)$,$\mathrm{C}(1,\ 2,\ 0)$を含む平面を$H$とする.以下の問いに答えよ.

(1)点$\mathrm{P}(-3,\ 2,\ 2)$は$H$上の点であることを示せ.
(2)点$\mathrm{Q}(1,\ -3,\ -4)$を通る直線が$H$と直交するとき,その交点の座標を求めよ.
琉球大学 国立 琉球大学 2015年 第2問
頂点が点$\mathrm{A}(0,\ 4)$で,点$\mathrm{B}(2,\ 0)$を通る放物線を考える.次の問いに答えよ.

(1)この放物線をグラフとする$2$次関数を求めよ.
(2)この放物線上にあり,$x$座標が$2a (a>0)$である点を$\mathrm{C}$とする.この放物線と$x$軸との交点で,点$\mathrm{B}$と異なる点を$\mathrm{D}$とする.点$\mathrm{C}$における放物線の接線$\ell_1$と点$\mathrm{D}$における放物線の接線$\ell_2$との交点$\mathrm{E}$の座標を,$a$を使って表せ.
(3)この放物線と直線$\ell_2$,および点$\mathrm{E}$を通り$y$軸に平行な直線で囲まれた部分の面積を求めよ.
熊本大学 国立 熊本大学 2015年 第3問
$a$と$b$を正の実数とする.$\triangle \mathrm{ABC}$において,$\angle \mathrm{B}$と$\angle \mathrm{C}$は鋭角とする.点$\mathrm{A}$を通り辺$\mathrm{BC}$に直交する直線を引き,辺$\mathrm{BC}$との交点を$\mathrm{X}_1$とし,線分$\mathrm{AX}_1$の長さを$1$とする.また,$\mathrm{BX}_1=a$,$\mathrm{CX}_1=b$とする.各$n=1,\ 2,\ 3,\ \cdots$に対して以下の操作を行う.

辺$\mathrm{BC}$上の点$\mathrm{X}_n$を通り辺$\mathrm{AC}$に平行な直線を引き,辺$\mathrm{AB}$との交点を$\mathrm{Y}_n$とする.また,点$\mathrm{Y}_n$を通り辺$\mathrm{BC}$に平行な直線を引き,辺$\mathrm{AC}$との交点を$\mathrm{Z}_n$とする.点$\mathrm{Z}_n$を通り辺$\mathrm{BC}$に直交する直線を引き,辺$\mathrm{BC}$との交点を$\mathrm{X}_{n+1}$とする.

線分$\mathrm{Z}_n \mathrm{X}_{n+1}$の長さを$l_n$とするとき,以下の問いに答えよ.

(1)$l_1$を$a,\ b$を用いて表せ.
(2)$l_{n+1}$を$l_n$,$a$,$b$を用いて表せ.
(3)$b=8a$のとき,$\displaystyle l_n>\frac{1}{2}$となる最小の奇数$n$を求めよ.必要ならば,$3.169<\log_2 9<3.17$を用いてよい.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。