タグ「直線」の検索結果

32ページ目:全2462問中311問~320問を表示)
札幌医科大学 公立 札幌医科大学 2016年 第4問
関数$f(x)=x+2 \cos x$を$0 \leqq x \leqq 2\pi$の範囲で考える.

(1)関数$y=f(x)$の極値と変曲点を求め,グラフの概形を描け.
(2)関数$y=f(x)$の二つの変曲点を通る直線を$\ell$とする.曲線$y=f(x)$と直線$\ell$とで囲まれる図形を$x$軸の周りに$1$回転させてできる立体の体積を求めよ.
センター試験 問題集 センター試験 2015年 第2問
$\kagiichi$ \ 条件$p_1,\ p_2,\ q_1,\ q_2$の否定をそれぞれ$\overline{p_1},\ \overline{p_2},\ \overline{q_1},\ \overline{q_2}$と書く.

(1)次の$[ア]$に当てはまるものを,下の$\nagamarurei$~$\nagamarusan$のうちから一つ選べ.

命題「($p_1$かつ$p_2$) $\Longrightarrow$ ($q_1$かつ$q_2$)」の対偶は$[ア]$である.

$\nagamarurei$ ($\overline{p_1}$または$\overline{p_2}$) $\Longrightarrow$ ($\overline{q_1}$または$\overline{q_2}$)
$\nagamaruichi$ ($\overline{q_1}$または$\overline{q_2}$) $\Longrightarrow$ ($\overline{p_1}$または$\overline{p_2}$)
$\nagamaruni$ ($\overline{q_1}$かつ$\overline{q_2}$) $\Longrightarrow$ ($\overline{p_1}$かつ$\overline{p_2}$)
$\nagamarusan$ ($\overline{p_1}$かつ$\overline{p_2}$) $\Longrightarrow$ ($\overline{q_1}$かつ$\overline{q_2}$)
(2)自然数$n$に対する条件$p_1,\ p_2,\ q_1,\ q_2$を次のように定める.
\[\begin{array}{ll}
p_1:n \text{は素数である} & p_2:n+2 \text{は素数である} \\
q_1:n+1 \text{は} 5 \text{の倍数である} & q_2:n+1 \text{は}6 \text{の倍数である}
\end{array} \]
$30$以下の自然数$n$のなかで$[イ]$と$[ウエ]$は
命題「($p_1$かつ$p_2$) $\Longrightarrow$ ($\overline{q_1}$かつ$q_2$)」
の反例となる.
\mon[$\kagini$] $\triangle \mathrm{ABC}$において,$\mathrm{AB}=3$,$\mathrm{BC}=5$,$\angle \mathrm{ABC}={120}^\circ$とする.

このとき,$\mathrm{AC}=[オ]$,$\displaystyle \sin \angle \mathrm{ABC}=\frac{\sqrt{[カ]}}{[キ]}$であり,
$\displaystyle \sin \angle \mathrm{BCA}=\frac{[ク] \sqrt{[ケ]}}{[コサ]}$である.

直線$\mathrm{BC}$上に点$\mathrm{D}$を,$\mathrm{AD}=3 \sqrt{3}$かつ$\angle \mathrm{ADC}$が鋭角,となるようにとる.点$\mathrm{P}$を線分$\mathrm{BD}$上の点とし,$\triangle \mathrm{APC}$の外接円の半径を$R$とすると,$R$のとり得る値の範囲は$\displaystyle \frac{[シ]}{[ス]} \leqq R \leqq [セ]$である.
東京大学 国立 東京大学 2015年 第1問
以下の命題$\mathrm{A}$,$\mathrm{B}$それぞれに対し,その真偽を述べよ.また,真ならば証明を与え,偽ならば反例を与えよ.

命題$\mathrm{A}$ \quad $n$が正の整数ならば,$\displaystyle \frac{n^3}{26}+100 \geqq n^2$が成り立つ.
命題$\mathrm{B}$ \quad 整数$n,\ m,\ \ell$が$5n+5m+3 \ell=1$をみたすならば,$10nm+3m \ell+3n \ell<0$が成り立つ.
東京大学 国立 東京大学 2015年 第2問
座標平面上の$2$点$\mathrm{A}(-1,\ 1)$,$\mathrm{B}(1,\ -1)$を考える.また,$\mathrm{P}$を座標平面上の点とし,その$x$座標の絶対値は$1$以下であるとする.次の条件$(ⅰ)$または$(ⅱ)$をみたす点$\mathrm{P}$の範囲を図示し,その面積を求めよ.

(i) 頂点の$x$座標の絶対値が$1$以上の$2$次関数のグラフで,点$\mathrm{A}$,$\mathrm{P}$,$\mathrm{B}$をすべて通るものがある.
(ii) 点$\mathrm{A}$,$\mathrm{P}$,$\mathrm{B}$は同一直線上にある.
東京大学 国立 東京大学 2015年 第3問
$\ell$を座標平面上の原点を通り傾きが正の直線とする.さらに,以下の$3$条件$(ⅰ)$,$(ⅱ)$,$(ⅲ)$で定まる円$C_1$,$C_2$を考える.

(i) 円$C_1$,$C_2$は$2$つの不等式$x \geqq 0$,$y \geqq 0$で定まる領域に含まれる.
(ii) 円$C_1$,$C_2$は直線$\ell$と同一点で接する.
(iii) 円$C_1$は$x$軸と点$(1,\ 0)$で接し,円$C_2$は$y$軸と接する.

円$C_1$の半径を$r_1$,円$C_2$の半径を$r_2$とする.$8r_1+9r_2$が最小となるような直線$\ell$の方程式と,その最小値を求めよ.
(図は省略)
北海道大学 国立 北海道大学 2015年 第1問
$2$つの放物線
\[ C_1:y=x^2,\quad C_2:y=-(x-1)^2 \]
がある.$a$は$0$でない実数とし,$C_1$上の$2$点$\mathrm{P}(a,\ a^2)$,$\mathrm{Q}(-2a,\ 4a^2)$を通る直線と平行な$C_1$の接線を$\ell$とする.

(1)$\ell$の方程式を$a$で表せ.
(2)$C_2$と$\ell$が異なる$2$つの共有点をもつような$a$の値の範囲を求めよ.
(3)$C_2$と$\ell$が異なる$2$つの共有点$\mathrm{R}$,$\mathrm{S}$をもつとする.線分$\mathrm{PQ}$の長さと線分$\mathrm{RS}$の長さが等しくなるとき,$a$の値を求めよ.
京都大学 国立 京都大学 2015年 第1問
直線$y=px+q$が,$y=x^2-x$のグラフとは交わるが,$y=|x|+|x-1|+1$のグラフとは交わらないような$(p,\ q)$の範囲を図示し,その面積を求めよ.
京都大学 国立 京都大学 2015年 第3問
次の問いに答えよ.

(1)$a$を実数とするとき,$(a,\ 0)$を通り,$y=e^x+1$に接する直線がただ$1$つ存在することを示せ.
(2)$a_1=1$として,$n=1,\ 2,\ \cdots$について,$(a_n,\ 0)$を通り,$y=e^x+1$に接する直線の接点の$x$座標を$a_{n+1}$とする.このとき,$\displaystyle \lim_{n \to \infty} (a_{n+1}-a_n)$を求めよ.
京都大学 国立 京都大学 2015年 第4問
$xyz$空間の中で,$(0,\ 0,\ 1)$を中心とする半径$1$の球面$S$を考える.点$\mathrm{Q}$が$(0,\ 0,\ 2)$以外の$S$上の点を動くとき,点$\mathrm{Q}$と点$\mathrm{P}(1,\ 0,\ 2)$の$2$点を通る直線$\ell$と平面$z=0$との交点を$\mathrm{R}$とおく.$\mathrm{R}$の動く範囲を求め,図示せよ.
広島大学 国立 広島大学 2015年 第1問
座標平面上の点$\mathrm{P}(1,\ 1)$を中心とし,原点$\mathrm{O}$を通る円を$C_1$とする.$k$を正の定数として,曲線$\displaystyle y=\frac{k}{x} (x>0)$を$C_2$とする.$C_1$と$C_2$は$2$点で交わるとし,その交点を$\mathrm{Q}$,$\mathrm{R}$とするとき,直線$\mathrm{PQ}$は$x$軸に平行であるとする.点$\mathrm{Q}$の$x$座標を$q$とし,点$\mathrm{R}$の$x$座標を$r$とする.次の問いに答えよ.

(1)$k,\ q,\ r$の値を求めよ.
(2)曲線$C_2$と線分$\mathrm{OQ}$,$\mathrm{OR}$で囲まれた部分の面積$S$を求めよ.
(3)$x=1+\sqrt{2} \sin \theta$とおくことにより,定積分$\displaystyle \int_r^q \sqrt{2-(x-1)^2} \, dx$の値を求めよ.
(4)円$C_1$の原点$\mathrm{O}$を含まない弧$\mathrm{QR}$と曲線$C_2$で囲まれた図形を,$x$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。