タグ「直線」の検索結果

29ページ目:全2462問中281問~290問を表示)
大阪市立大学 公立 大阪市立大学 2016年 第3問
$a,\ b$は実数で,$b>0$とする.放物線$y=x^2$と直線$y=ax+b$の$2$つの交点を$\mathrm{P}$,$\mathrm{Q}$とおく.次の問いに答えよ.

(1)線分$\mathrm{PQ}$の長さを,$a$と$b$を用いて表せ.
(2)直線$y=ax+b$が点$\displaystyle \left( 1,\ \frac{5}{4} \right)$を通るときの,線分$\mathrm{PQ}$の長さの最小値を求めよ.
大阪市立大学 公立 大阪市立大学 2016年 第4問
$4$面体$\mathrm{OABC}$は,
\[ \begin{array}{lll}
\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OA}}=9, & \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=3, & \overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OB}}=14, \phantom{\frac{1}{[ ]}} \\
\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}=1, & \overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}=3, & \overrightarrow{\mathrm{AC}} \cdot \overrightarrow{\mathrm{BC}}=5 \phantom{\frac{[ ]}{[ ]}}
\end{array} \]
を満たすものとする.また,直線$\mathrm{AB}$上の点$\mathrm{D}$を,$\overrightarrow{\mathrm{OD}}$と$\overrightarrow{\mathrm{AB}}$が垂直になるようにとり,実数$m$を$\overrightarrow{\mathrm{OD}}=m \overrightarrow{\mathrm{OA}}+(1-m) \overrightarrow{\mathrm{OB}}$となるように定める.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおくとき,次の問いに答えよ.

(1)$m$の値を求めよ.
(2)$m<s<1$を満たす実数$s$に対し,辺$\mathrm{AB}$を$(1-s):s$に内分する点$\mathrm{P}$をとる.さらに,直線$\mathrm{AC}$上の点$\mathrm{Q}$を,$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{PQ}}$が垂直になるようにとり,実数$t$を$\overrightarrow{\mathrm{OQ}}=t \overrightarrow{a}+(1-t) \overrightarrow{c}$となるように定める.$t$を$s$を用いて表せ.
(3)$(2)$の$t$に対し,$0<t<1$が成り立つことを示せ.
大阪市立大学 公立 大阪市立大学 2016年 第3問
$0<r<1$を満たす実数$r$に対して,第$1$象限内の曲線$C:x^r+y^r=1$を考える.曲線$C$上の点$\mathrm{P}(p,\ q)$をとり,$\ell$を点$\mathrm{P}$における$C$の接線とし,$\ell$が$x$軸および$y$軸と交わる点をそれぞれ$\mathrm{A}$,$\mathrm{B}$とする.次の問いに答えよ.

(1)点$\mathrm{A}$と点$\mathrm{B}$の座標を$p,\ q,\ r$を用いて表せ.
(2)点$\mathrm{P}$を曲線$C$上のどこにとっても線分$\mathrm{AB}$の長さが同じになるような$r$の値を求めよ.
首都大学東京 公立 首都大学東京 2016年 第2問
数直線上に$2$点$\mathrm{Q}(-1)$と$\displaystyle \mathrm{P}_1 \left( \frac{1}{2} \right)$をとり,線分$\mathrm{QP}_1$を$3:1$に外分する点を$\mathrm{P}_2$,線分$\mathrm{QP}_2$を$3:1$に外分する点を$\mathrm{P}_3$とする.以下同様に$n=1,\ 2,\ \cdots$に対し線分$\mathrm{QP}_n$を$3:1$に外分する点を$\mathrm{P}_{n+1}$とする.また$\mathrm{P}_n$の座標を$a_n$とする.このとき,以下の問いに答えなさい.

(1)$\mathrm{A}$を数直線上の$\mathrm{Q}$と異なる点とする.線分$\mathrm{QA}$を$3:1$に外分する点が$\mathrm{P}_1$であるとき,$\mathrm{A}$の座標$a$を求めなさい.
(2)すべての自然数$n$に対して
\[ a_n=\left( \frac{3}{2} \right)^n-1 \]
が成り立つことを$n$に関する数学的帰納法で証明しなさい.
(3)$999<a_n<9999$をみたす自然数$n$をすべて求めなさい.ただし,本問では$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
愛知県立大学 公立 愛知県立大学 2016年 第2問
原点を$\mathrm{O}$とする座標平面上に,異なる$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{P}$がある.それぞれの位置ベクトルを$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{p}$とし,$\overrightarrow{p}=s \overrightarrow{a}+t \overrightarrow{b}$および$2s+t=2$を満たすとする.ただし,$s>0$,$t>0$とする.また$\overrightarrow{a}$と$\overrightarrow{b}$がなす角度を$\displaystyle \theta \left( 0<\theta<\frac{\pi}{2} \right)$とする.このとき,以下の問いに答えよ.

(1)点$\mathrm{C}$の位置ベクトル$\overrightarrow{c}$が$\overrightarrow{c}=2 \overrightarrow{b}$を満たすとき,点$\mathrm{P}$は直線$\mathrm{AC}$上にあることを示せ.
(2)点$\mathrm{P}$を中心とする円が直線$\mathrm{OA}$,$\mathrm{OB}$に接しているとする.$|\overrightarrow{a|}=3$,$|\overrightarrow{b|}=1$とするとき,$s$と$t$を求めよ.
(3)$(2)$のとき,直線$\mathrm{OA}$に関して,点$\mathrm{P}$と対称な点$\mathrm{Q}$の位置ベクトルを$\overrightarrow{a}$,$\overrightarrow{b}$,$\theta$で表せ.
大阪府立大学 公立 大阪府立大学 2016年 第2問
\begin{mawarikomi}{50mm}{(図は省略)}
右図のような$1$辺の長さが$1$の立方体$\mathrm{OABC}$-$\mathrm{DEFG}$に対し,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とおく.$\displaystyle 0<t<\frac{1}{2}$となる$t$に対して,辺$\mathrm{AE}$を$t:1-t$に内分する点を$\mathrm{P}$,辺$\mathrm{CG}$を$2t:1-2t$に内分する点を$\mathrm{Q}$とする.$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$の定める平面を$\alpha$とし,平面$\alpha$と直線$\mathrm{BF}$との交点を$\mathrm{R}$とすると,四角形$\mathrm{OPRQ}$は平行四辺形である.平行四辺形$\mathrm{OPRQ}$の面積を$S$,四角錐$\mathrm{DOPRQ}$の体積を$V$とする.このとき,以下の問いに答えよ.
\end{mawarikomi}

(1)$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{OQ}}$のなす角を$\theta$とするとき,$\cos \theta$を$t$を用いて表せ.
(2)$S$を$t$を用いて表せ.
(3)平面$\alpha$に点$\mathrm{D}$から垂線$\mathrm{DH}$を下ろす.$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{c},\ \overrightarrow{d}$と$t$を用いて表せ.
(4)$V$は$t$によらず一定であることを示せ.
大阪府立大学 公立 大阪府立大学 2016年 第3問
楕円$\displaystyle C_1:\frac{x^2}{9}+\frac{y^2}{5}=1$の焦点を$\mathrm{F}$,$\mathrm{F}^\prime$とする.ただし,$\mathrm{F}$の$x$座標は正である.正の実数$m$に対し,$2$直線$y=mx$,$y=-mx$を漸近線にもち,$2$点$\mathrm{F}$,$\mathrm{F}^\prime$を焦点とする双曲線を$C_2$とする.第$1$象限にある$C_1$と$C_2$の交点を$\mathrm{P}$とする.このとき,以下の問いに答えよ.

(1)$C_2$の方程式を$m$を用いて表せ.
(2)線分$\mathrm{FP}$および線分$\mathrm{F}^\prime \mathrm{P}$の長さを$m$を用いて表せ.
(3)$\angle \mathrm{F}^\prime \mathrm{PF}={60}^\circ$となる$m$の値を求めよ.
大阪府立大学 公立 大阪府立大学 2016年 第2問
\begin{mawarikomi}{50mm}{(図は省略)}
右図のような$1$辺の長さが$1$の立方体$\mathrm{OABC}$-$\mathrm{DEFG}$に対し,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とおく.$\displaystyle 0<t<\frac{1}{2}$となる$t$に対して,辺$\mathrm{AE}$を$t:1-t$に内分する点を$\mathrm{P}$,辺$\mathrm{CG}$を$2t:1-2t$に内分する点を$\mathrm{Q}$とする.$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$の定める平面を$\alpha$とし,平面$\alpha$と直線$\mathrm{BF}$との交点を$\mathrm{R}$とすると,四角形$\mathrm{OPRQ}$は平行四辺形である.平行四辺形$\mathrm{OPRQ}$の面積を$S$,四角錐$\mathrm{DOPRQ}$の体積を$V$とする.このとき,以下の問いに答えよ.
\end{mawarikomi}

(1)$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{OQ}}$のなす角を$\theta$とするとき,$\cos \theta$を$t$を用いて表せ.
(2)$S$を$t$を用いて表せ.
(3)平面$\alpha$に点$\mathrm{D}$から垂線$\mathrm{DH}$を下ろす.$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{c},\ \overrightarrow{d}$と$t$を用いて表せ.
(4)$V$は$t$によらず一定であることを示せ.
首都大学東京 公立 首都大学東京 2016年 第1問
曲線$y=\log x$を$C$で表す.$1<p<e$をみたす実数$p$に対し,曲線$C$上の点$\mathrm{P}(p,\ \log p)$における接線を$\ell$とし,$\ell$の方程式を$y=ax+b$とする.ただし,$\log x$は自然対数とし,$e$は自然対数の底とする.以下の問いに答えなさい.

(1)$a$を$p$の式で表しなさい.
(2)$b$を$p$の式で表しなさい.
(3)$x$軸と直線$\ell$および曲線$C$で囲まれた図形$D_1$の面積を$p$の式で表しなさい.
(4)$x$軸と$y$軸および直線$\ell$で囲まれた図形を$D_2$とする.$D_1$の面積と$D_2$の面積が等しいとき,$p$の値を求めなさい.
首都大学東京 公立 首都大学東京 2016年 第3問
$a$と$b$は$a^2>b$をみたす実数であるとする.座標平面において,点$\mathrm{P}(a,\ b)$から曲線$y=x^2$に引いた$2$つの接線の接点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とする.以下の問いに答えなさい.

(1)内積$\overrightarrow{\mathrm{PQ}} \cdot \overrightarrow{\mathrm{PR}}$を$a$と$b$の式で表しなさい.
(2)三角形$\mathrm{PQR}$の面積$S$を$a$と$b$の式で表しなさい.
(3)直線$y=2x-3$を$\ell$とする.点$\mathrm{P}$が$\ell$上を動くとき,$(2)$の$S$の最小値を求めなさい.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。