タグ「直線」の検索結果

244ページ目:全2462問中2431問~2440問を表示)
大阪府立大学 公立 大阪府立大学 2010年 第4問
2次の正方行列$A$の表す1次変換を$f$とする.(すなわち,行列$A$で表される座標平面上の点の移動を$f$とする.) \ $f$により,点$(1,\ 1)$は点$(2,\ 2)$に移り,点$(1,\ -1)$は点$(-1,\ 1)$に移る.次の問いに答えよ.

(1)行列$A$を求めよ.
(2)$f$によって自分自身に移る点は原点のみであることを証明せよ.
(3)直線$y=ax$上のすべての点が$f$によって$x$軸上に移る.このとき,$a$を求めよ.
高崎経済大学 公立 高崎経済大学 2010年 第2問
$2$つの放物線$\ell_1:y=x^2$と$\ell_2:y=-2x^2+3x+k$($k$は定数)がある.以下の問に答えよ.

(1)$\ell_1$と$\ell_2$が接するときの$k$の値と,接点$\mathrm{P}$の座標を求めよ.
(2)$\ell_1$と$\ell_2$が接するとき,$\mathrm{OQ}=\mathrm{PQ}$となるような$\ell_2$上の点$\mathrm{Q}$の$x$座標を求めよ.ただし,$\mathrm{O}$は原点である.
大阪府立大学 公立 大阪府立大学 2010年 第2問
空間の3点A,B,Cは同一直線上にはないものとし,原点をOとする.空間の点Pの位置ベクトル$\overrightarrow{\mathrm{OP}}$が,$x+y+z=1$を満たす正の実数$x,\ y,\ z$を用いて,
\[ \overrightarrow{\mathrm{OP}}=x \overrightarrow{\mathrm{OA}}+y \overrightarrow{\mathrm{OB}} +z\overrightarrow{\mathrm{OC}} \]
と表されているとする.

(1)直線APと直線BCは交わり,その交点をDとすれば,DはBCを$z:y$に内分し,PはADを$(1-x):x$に内分することを示せ.
(2)$\triangle$PAB,$\triangle$PBCの面積をそれぞれ$S_1,\ S_2$とすれば,
\[ \frac{S_1}{z}=\frac{S_2}{x} \]
が成り立つことを示せ.
大阪府立大学 公立 大阪府立大学 2010年 第3問
単位行列$E$の実数倍ではない行列$A=\biggl( \begin{array}{cc}
a & b \\
c & d
\end{array} \biggr)$を考える.$A$で表わされる$xy$平面上の移動を$f$とする.

(1)$A^2=kE$を満たす実数$k$が存在するための必要十分条件は,$a+d=0$であることを示せ.
(2)$a+d=0$のとき,原点Oとは異なる点Pで,$f(P)$が直線OP上にあるものが存在すれば,$a^2+bc \geqq 0$であることを示せ.
(3)$a+d=0$かつ$a^2+bc \geqq 0$であるとする.このとき$\lambda=\sqrt{a^2+bc}$とおけば,$(A-\lambda E)(A+\lambda E)=O$が成り立つことを示せ.ただし,$O$は零行列とする.
(4)(3)の仮定のもとで,$\lambda=\sqrt{a^2+bc}$とおく.原点Oとは異なる点Pで,$\text{Q}=f(P)$とすれば,$\overrightarrow{\mathrm{OQ}}=\lambda \overrightarrow{\mathrm{OP}}$となるものが存在することを示せ.
県立広島大学 公立 県立広島大学 2010年 第4問
放物線$\displaystyle y=\frac{1}{2}x^2$について,次の問いに答えよ.

(1)点P$\displaystyle \left(1,\ \frac{1}{2} \right)$における接線$\ell_1$の方程式を求めよ.
(2)点Pを通り直線$\ell_1$に直交する直線を$\ell_2$とする.直線$\ell_2$と$x$軸との交点Aの座標を求めよ.
(3)点Aを中心とし,直線$\ell_1$に接する円の方程式を求めよ.
(4)(3)の円と$x$軸との交点のうち原点に近い方の点Bの座標を求めよ.
(5)放物線,円弧BPおよび$x$軸で囲まれた図形の面積を求めよ.
名古屋市立大学 公立 名古屋市立大学 2010年 第4問
原点をOとする座標空間において,2点A$(2,\ 0,\ 0)$,B$(0,\ 3,\ 0)$から等距離にある点の集合を平面Hとする.次の問いに答えよ.

(1)直線ABが平面Hに垂直であることを示せ.
(2)原点Oから平面Hに下ろした垂線の足を点Cとする.点Cの座標を求めよ.
(3)$d$を正の実数とする.PをH上の点とするとき,不等式$\text{OP} \leqq d$を満たす点Pの領域の面積を求めよ.
高知工科大学 公立 高知工科大学 2010年 第2問
座標平面上に円$C:x^2+y^2-8x+2y+7=0$と点A$(0,\ 1)$がある.円$C$の中心をB,半径を$r$とする.また点Aを通り,傾き$m$の直線を$\ell$とする.次の各問に答えよ.

(1)点Bの座標と$r$を求めよ.
(2)直線$\ell$が円$C$と共有点を持つとき,$m$の取り得る値の範囲を求めよ.
(3)点Bを通り,傾き3の直線と直線$\ell$との交点をPとする.点Pが円$C$の円周または内部に含まれるとき,$m$の取り得る値の範囲を求めよ.
(4)(3)のとき,線分APの両端を除いた部分と円$C$との共有点をQとする.AQの長さの最大値と最小値を求めよ.
京都府立大学 公立 京都府立大学 2010年 第1問
以下の問いに答えよ.

(1)$\sqrt{5}$が無理数であることを証明せよ.
(2)$\alpha$を$2$次方程式$x^2-4x-1=0$の解とするとき,$(\alpha-a)(\alpha-b)=1+c$を満たす自然数の組$(a,\ b,\ c)$をすべて求めよ.
(3)座標平面上の点$(s,\ t)$で$s$と$t$のどちらも整数となるものを格子点と呼ぶ.連立不等式
\[ \left\{
\begin{array}{l}
y \geqq 3x^2-12x-3 \\
y \leqq 0
\end{array}
\right. \]
の表す領域を$D$とする.$k^2-4k-1<0$を満たす整数$k$に対して,直線$\ell:x=k$上にあり,かつ,$D$に含まれる格子点の個数を$N_k$とする.

(i) $N_k$を$k$を用いて多項式で表せ.
(ii) $D$に含まれる格子点の総数を求めよ.
名古屋市立大学 公立 名古屋市立大学 2010年 第1問
曲線$y=f(x)=x^3-x$上の点A$(a,\ f(a))$での接線を$\ell$とする.ただし$a>0$とする.次の問いに答えよ.

(1)接線$\ell$の方程式$y=g(x)$を求めよ.
(2)$y=f(x)$と$\ell$の接点以外の交点Bの座標$(b,\ f(b))$を求めよ.
(3)$x \leqq 2a$において,$f(x)-g(x)$の最大値とそのときの$x$の値を求めよ.
名古屋市立大学 公立 名古屋市立大学 2010年 第2問
原点をOとする座標空間において,2点A$(2,\ 0,\ 0)$,B$(0,\ 3,\ 0)$から等距離にある点の集合を平面Hとする.次の問いに答えよ.

(1)直線ABが平面Hに垂直であることを示せ.
(2)原点Oから平面Hに下ろした垂線の足を点Cとする.点Cの座標を求めよ.
(3)$d$を正の実数とする.PをH上の点とするとき,不等式$\text{OP} \leqq d$を満たす点Pの領域の面積を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。