タグ「直線」の検索結果

236ページ目:全2462問中2351問~2360問を表示)
早稲田大学 私立 早稲田大学 2010年 第2問
$a$は定数で,$a>1$とする.座標平面において,

円 \quad $C:x^2+y^2=1$
直線 \ $\ell:x=a$

とする.
$\ell$上の点$\mathrm{P}$を通り円$C$に接する$2$本の接線の接点をそれぞれ$\mathrm{A}$,$\mathrm{B}$とするとき,直線$\mathrm{AB}$は,点$\mathrm{P}$によらず,ある定点を通ることを示し,その定点の座標を求めよ.
早稲田大学 私立 早稲田大学 2010年 第6問
放物線$y=3x^2-12x (m \leqq x \leqq m+2)$と$3$直線$y=0$,$x=m$,$x=m+2$で囲まれた$2$つの部分の面積の和を$S$とする.ただし,$m$は定数で$2<m<4$とする.このとき,$S$は$m=[テ]+\sqrt{[ト]}$で最小値$[ナ]+[ニ]\sqrt{[ヌ]}$をとる.ただし,$[ヌ]$はできる限り小さい自然数で答えること.
早稲田大学 私立 早稲田大学 2010年 第1問
次の[\phantom{ア]}にあてはまる数,数式または文字等を解答用紙の所定欄に記入せよ.

(1)極限
\[ \lim_{n\to \infty} \frac{1}{n} \sqrt[n]{(n+1)(n+2)\cdots(n+n)} \]
の値は$[ア]$である.
(2)ある囲碁大会で,$5$つの地区から男女が各$1$人ずつ選抜されて,男性$5$人と女性$5$人のそれぞれが異性を相手とする対戦を$1$回行う.その対戦組み合わせを無作為な方法で決めるとき,同じ地区同士の対戦が含まれない組み合わせが起こる確率は$[イ]$である.
(3)$\triangle \mathrm{ABC}$において,辺$\mathrm{AB}$を$2:1$に内分する点を$\mathrm{P}$,辺$\mathrm{AC}$を$2:3$に内分する点を$\mathrm{Q}$とする.直線$\mathrm{BQ}$と直線$\mathrm{CP}$の交点を$\mathrm{R}$とするとき,ベクトル$\overrightarrow{\mathrm{AR}}$をベクトル$\overrightarrow{\mathrm{AB}},\ \overrightarrow{\mathrm{AC}}$で表すと$[ウ]$である.
(4)関数
\[ y= \frac{x}{\sqrt{x^2+1}+1} \]
の逆関数を表す式は$y= [エ]$で,その定義域は$[オ]$である.
早稲田大学 私立 早稲田大学 2010年 第3問
$t$を実数とする.$2$つの放物線

$y=x^2+1 \qquad \cdots\cdots①$
$y=-(x-t)^2+t \qquad \cdots\cdots②$

の両方に接する$2$本の直線を$\ell_1,\ \ell_2$とし,$\ell_1$と$\ell_2$の交点を$\mathrm{P}$,$\ell_1$と$①$の接点を$\mathrm{A}(\alpha,\ \alpha^2+1)$,$\ell_2$と$①$の接点を$\mathrm{B}(\beta,\ \beta^2+1)$とする.次の設問に答えよ.

(1)$\mathrm{P}$の座標を$\alpha,\ \beta$を用いて表せ.
(2)三角形$\mathrm{APB}$の面積を$S(t)$とするとき,$S(t)$を$t$の式で表せ.
(3)$S(t)$の最小値を求めよ.
金沢工業大学 私立 金沢工業大学 2010年 第1問
次の問いに答えよ.

(1)$\displaystyle x=\frac{\sqrt{5}+\sqrt{3}}{\sqrt{2}}$のとき,$\displaystyle x+\frac{1}{x}=\sqrt{[アイ]}$,$\displaystyle x^2+\frac{1}{x^2}=[ウ]$である.

(2)$|\abs{x-1|-2}=3$の解は$x=[エオ],\ [カ]$である.
(3)$2$つの$2$次関数$y=6x^2+2kx+k$,$y=-x^2+(k-6)x-1$のグラフが両方とも$x$軸と共有点をもたないような定数$k$の値の範囲は$[キ]<k<[ク]$である.
(4)$0^\circ \leqq \theta \leqq 180^\circ$で$\displaystyle \tan \theta=-\frac{4}{3}$のとき,$\displaystyle \cos \theta=\frac{[ケコ]}{[サ]}$であり,$\displaystyle \sin (180^\circ-\theta)=\frac{[シ]}{[ス]}$である.
(5)不等式$\displaystyle \frac{2x-5}{4}<\frac{x+4}{3} \leqq \frac{3x+1}{6}$の解は$\displaystyle [セ] \leqq x<\frac{[ソタ]}{[チ]}$である.
(6)$1$から$100$までの整数のうち,$4$の倍数かつ$6$の倍数である整数は$[ツ]$個あり,$4$の倍数または$6$の倍数である整数は$[テト]$個ある.
(7)$1$個のさいころを投げて,偶数の目が出たときはその目の数の$2$倍を得点とし,奇数の目が出たときはその目の数の$3$倍を得点とするゲームを行う.このとき,このゲームの得点の期待値は$\displaystyle \frac{[アイ]}{[ウ]}$である.
(8)図のように,直線$\ell$は中心を$\mathrm{O}$とする円と点$\mathrm{A}$において接している.また,$\ell$上の点$\mathrm{P}$と$\mathrm{O}$を通る直線と円との交点を図のように$\mathrm{B}$,$\mathrm{C}$とし,$\angle \mathrm{PAB}=115^\circ$であるとする.このとき,
\[ \angle \mathrm{ABC}=[エオ]^\circ,\quad \angle \mathrm{APC}=[カキ]^\circ \]
である.
(図は省略)
金沢工業大学 私立 金沢工業大学 2010年 第4問
$\mathrm{O}$を原点とする座標平面に点$\mathrm{A}(4,\ 6)$,$\mathrm{B}(6,\ -4)$がある.直線$y=x$に関して点$\mathrm{A}$と対称な点を$\mathrm{P}$,点$\mathrm{B}$に関して点$\mathrm{A}$と対称な点を$\mathrm{Q}$とする.

(1)点$\mathrm{P}$の座標は$([ク],\ [ケ])$である.
(2)点$\mathrm{Q}$の座標は$([コ],\ [サシス])$である.
(3)$\triangle \mathrm{PAB}$の面積は$[セ]$である.
(4)$\triangle \mathrm{PAQ}$の面積は$[ソタ]$である.
金沢工業大学 私立 金沢工業大学 2010年 第5問
放物線$y=x^2-5x$に直線$y=x+a$が接しているとする.ただし,$a$は定数とする.

(1)$a=[アイ]$であり,接点の座標は$([ウ],\ [エオ])$である.
(2)この放物線と直線,および$y$軸で囲まれた図形の面積は$[カ]$である.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2010年 第5問
半径1の円Oの中心Oを通る直線上に$\text{OA}=2$となるように点Aを定める.点Aを通り,円Oと2点B,Cで交わるような直線を引き,$\text{AB}=\text{BC}$となるようにしたい.2直線のなす角$\theta = \angle \text{OAB} \ (0^\circ <\theta<30^\circ)$をどのように定めればよいか.次の手順で検討せよ.

(1)線分BCの中点をMとして,線分AMの長さを$\cos \theta$を用いて表せ.
(2)同様に,線分BMの長さを$\cos \theta$を用いて表せ.
(3)$\text{AB}=\text{BC}$のとき$\text{AM}= 3\text{BM}$である.これを利用して$\cos \theta$の値を求めよ.
北海学園大学 私立 北海学園大学 2010年 第2問
座標平面上に

円$C:x^2+y^2=10$
直線$\ell:y=-x+4$

があり,円$C$と直線$\ell$の交点を$\mathrm{P}(x_1,\ y_1)$,$\mathrm{Q}(x_2,\ y_2)$とする.ただし,$x_1>x_2$とする.

(1)$\mathrm{P}$と$\mathrm{Q}$の座標をそれぞれ求めよ.また,線分$\mathrm{PQ}$の長さを求めよ.
(2)$\mathrm{P}$,$\mathrm{Q}$における円$C$の接線をそれぞれ$\ell_1$,$\ell_2$とおく.$\ell_1$と$\ell_2$の方程式を求めよ.また,$\ell_1$,$\ell_2$の交点$\mathrm{R}$の座標と線分$\mathrm{PR}$の長さを求めよ.
(3)原点$\mathrm{O}$と直線$\ell$の距離$d$を求めよ.また,三角形$\mathrm{OPQ}$の面積$S$を求めよ.
北海学園大学 私立 北海学園大学 2010年 第5問
曲線$y=2e^{x-1}$と曲線$C:y=2 \log ax$は点$(b,\ c)$のみで接し,接線を共有する.ただし,$a,\ b,\ c$は定数とし,$b \geqq 1$とする.また,$e$は自然対数の底とする.

(1)曲線$C$と$x$軸との交点の座標を$a$の式で表せ.
(2)$t \geqq 1$のとき,$\displaystyle f(t)=e^{t-1}-\frac{1}{t}$の最小値を求めよ.さらに,$a,\ b,\ c$の値を求めよ.
(3)曲線$C$,$x$軸および直線$x=1$で囲まれた図形の面積を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。