タグ「直線」の検索結果

225ページ目:全2462問中2241問~2250問を表示)
三重大学 国立 三重大学 2010年 第3問
$y=\sin 2x+\cos x$のグラフの$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$に対応する部分を$C$とする.また点$\displaystyle \left( \frac{\pi}{2},\ 0 \right)$におけるグラフの接線を$\ell$とする.このとき次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$の範囲で曲線$C$が$\ell$の上側になる部分はないことを示せ.
(3)曲線$C$,直線$\ell$および$y$軸で囲まれる図形の面積を求めよ.
三重大学 国立 三重大学 2010年 第4問
$0<m<1$とする.$f(x)=x^2,\ g(x)=mx$とおく.この$f(x)$と$g(x)$を$0 \leqq x \leqq 1$の範囲で考える.

(1)放物線$y=f(x)$と直線$y=g(x)$および直線$x=1$で囲まれるふたつの図形の面積の和を$S(m)$とする.$S(m)$を最小にする$m$とそのときの値を求めよ.
(2)$0 \leqq x \leqq 1$の範囲での$|f(x)-g(x)|$の最大値を$h(m)$とする.$h(m)$を最小にする$m$とそのときの値を求めよ.
三重大学 国立 三重大学 2010年 第4問
$\displaystyle y=\sin 2x-x+\frac{\pi}{2}$のグラフの$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$に対応する部分を$C$とする.また点$\displaystyle \left( \frac{\pi}{2},\ 0 \right)$におけるグラフの接線を$\ell$とする.このとき次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$の範囲で曲線$C$が$\ell$の上側になる部分はないことを示せ.
(3)曲線$C$,直線$\ell$および$y$軸で囲まれる図形の面積を求めよ.
三重大学 国立 三重大学 2010年 第5問
$0<m<1$とする.$f(x)=x^2,\ g(x)=mx$とおく.この$f(x)$と$g(x)$を$0 \leqq x \leqq 1$の範囲で考える.

(1)放物線$y=f(x)$と直線$y=g(x)$および直線$x=1$で囲まれるふたつの図形の面積の和を$S(m)$とする.$S(m)$を最小にする$m$とそのときの値を求めよ.
(2)$0 \leqq x \leqq 1$の範囲での$|f(x)-g(x)|$の最大値を$h(m)$とする.$h(m)$を最小にする$m$とそのときの値を求めよ.
宮崎大学 国立 宮崎大学 2010年 第3問
座標平面上に点A$(0,\ 2)$と曲線$C:y=x^2$がある.
曲線$C$上に点P$(a,\ a^2) \ (1 \leqq a <2)$をとる.また,点Pを通り傾き1の直線と曲線$C$との交点のうち,点Pと異なる点をQとする.$\triangle$PAQの面積を$S$とおくとき,次の各問に答えよ.

(1)$S$を,$a$を用いて表せ.
(2)$S$の最大値とそのときの$a$の値を求めよ.
(3)直線PQと曲線$C$で囲まれる部分の面積が,$S$と等しくなる$a$の値を求めよ.
熊本大学 国立 熊本大学 2010年 第1問
原点をOとし,空間内に3点A$(4,\ 0,\ 0)$,B$(1,\ 2,\ 0)$,C$(2,\ 1,\ 2)$をとる.線分BCを$t:(1-t) \ (0<t<1)$に内分する点をPとおく.このとき,以下の問いに答えよ.

(1)$\triangle$OAPの面積を最小にする$t$の値を求めよ.
(2)Cを通り,3点O,A,Pを通る平面に垂直な直線と$xy$平面との交点をDとする.Dが$\triangle$OABの内部にあるとき,$t$の範囲を求めよ.
長崎大学 国立 長崎大学 2010年 第2問
正三角形ABCにおいて,線分ABを$2:1$に内分する点をD,線分BCの中点をE,点Eから直線ABに引いた垂線とABの交点をHとする.また,$\overrightarrow{\mathrm{HB}}=\overrightarrow{a},\ \overrightarrow{\mathrm{HE}}=\overrightarrow{b}$とする.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AB}},\ \overrightarrow{\mathrm{AH}},\ \overrightarrow{\mathrm{DB}}$を$\overrightarrow{a}$を用いて表せ.
(2)$\overrightarrow{\mathrm{CD}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)線分HE上の点Fが$\overrightarrow{\mathrm{AF}} \perp \overrightarrow{\mathrm{CD}}$を満たすとき,Fは線分EHを$2:1$に内分することを示せ.
千葉大学 国立 千葉大学 2010年 第6問
数直線の原点上にある点が,以下の規則で移動する試行を考える. \\
\quad (規則) サイコロを振って出た目が奇数の場合は,正の方向に1移動し,出た目が偶数の場合は,負の方向に1移動する. \\
$k$回の試行の後の,点の座標を$X(k)$とする.

(1)$X(10)=0$である確率を求めよ.
(2)$X(1) \neq 0,\ X(2) \neq 0,\ \cdots,\ X(5) \neq 0$であって,かつ,$X(6)=0$となる確率を求めよ.
(3)$X(1) \neq 0,\ X(2) \neq 0,\ \cdots,\ X(9) \neq 0$であって,かつ,$X(10)=0$となる確率を求めよ.
宮崎大学 国立 宮崎大学 2010年 第4問
下図の$\triangle \mathrm{ABC}$において,$\mathrm{AB}:\mathrm{AC}=3:4$とする.また,$\angle \mathrm{A}$の二等分線と辺$\mathrm{BC}$との交点を$\mathrm{D}$とする.さらに,

線分$\mathrm{AD}$を$5:3$に内分する点を$\mathrm{E}$,
線分$\mathrm{ED}$を$2:1$に内分する点を$\mathrm{F}$,
線分$\mathrm{AC}$を$7:5$に内分する点を$\mathrm{G}$

とする.\\
\quad 直線$\mathrm{BE}$と辺$\mathrm{AC}$との交点を$\mathrm{H}$とするとき,次の各問に答えよ.
(図は省略)

(1)$\displaystyle \frac{\mathrm{AH}}{\mathrm{HC}}$の値を求めよ.
(2)$\mathrm{BH} \para \mathrm{FG}$であることを示せ.
(3)$\mathrm{FG}=7$のとき,線分$\mathrm{BE}$の長さを求めよ.
鳥取大学 国立 鳥取大学 2010年 第1問
次の問いに答えよ.

(1)直線$2x+y=16 \cdots\cdots ①,\ 2x+3y=24 \cdots\cdots ②$の$x$切片と$y$切片の座標をそれぞれ求めよ.
(2)(1)で定めた直線$①$と$②$との交点の座標を求めよ.
(3)$4$つの不等式$2x+y \leqq 16,\ 2x+3y \leqq 24,\ x \geqq 0,\ y \geqq 0$の表す領域を$F$とする.$F$の面積を求めよ.
(4)点$(x,\ y)$が(3)で定めた領域$F$を動くとき,$x+y$の最大値と最小値を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。