タグ「直線」の検索結果

220ページ目:全2462問中2191問~2200問を表示)
信州大学 国立 信州大学 2010年 第4問
$0 < p < 4$とし,放物線$\displaystyle y =\frac{1}{4}x^2$上の点$\displaystyle \left(p,\ \frac{1}{4}p^2 \right)$を中心にして,半径が$\displaystyle \frac{1}{4}p^2$の円$C$をかく.次に,$m > 0$とし,直線$y = mx$が円$C$に接しているとする.

(1)$m$を$p$の式で表せ.
(2)放物線$\displaystyle y =\frac{1}{4}x^2$と直線$y = mx$によって囲まれる図形の面積が$\displaystyle \frac{1}{3}$のとき,$m$と$p$の値を求めよ.
信州大学 国立 信州大学 2010年 第3問
方程式$y = (\sqrt{x}-\sqrt{2})^2$が定める曲線を$C$とする.

(1)曲線$C$と$x$軸,$y$軸で囲まれた図形の面積$S$を求めよ.
(2)曲線$C$と直線$y=2$で囲まれた図形を,直線$y=2$のまわりに1回転してできる立体の体積$V$を求めよ.
東京大学 国立 東京大学 2010年 第4問
$\mathrm{O}$を原点とする座標平面上の曲線
\[ C:\quad y=\frac{1}{2}x+\sqrt{\frac{1}{4}x^2+2} \]
と,その上の相異なる$2$点$\mathrm{P}_1(x_1,\ y_1)$,$\mathrm{P}_2(x_2,\ y_2)$を考える.

(1)$\mathrm{P}_i \ (i=1,\ 2)$を通る$x$軸に平行な直線と,直線$y=x$との交点を,それぞれ$\mathrm{H}_i \ (i=1,\ 2)$とする.このとき$\triangle \mathrm{OP}_1 \mathrm{H}_1$と$\triangle \mathrm{OP}_2 \mathrm{H}_2$の面積は等しいこと示せ.
(2)$x_1<x_2$とする.このとき$C$の$x_1\leqq x\leqq x_2$の範囲にある部分と,線分$\mathrm{P}_1 \mathrm{O}$,$\mathrm{P}_2 \mathrm{O}$で囲まれる図形の面積を,$y_1$,$y_2$を用いて表せ.
千葉大学 国立 千葉大学 2010年 第3問
$\triangle \mathrm{ABC}$において,頂点$\mathrm{A}$から直線$\mathrm{BC}$に下ろした垂線の長さは1,頂点$\mathrm{B}$から直線$\mathrm{CA}$に下ろした垂線の長さは$\sqrt{2}$,頂点$\mathrm{C}$から直線$\mathrm{AB}$に下ろした垂線の長さは2である.このとき,$\triangle \mathrm{ABC}$の面積と,内接円の半径,および,外接円の半径を求めよ.
千葉大学 国立 千葉大学 2010年 第5問
放物線$y=x^2$と直線$y=ax+b$によって囲まれる領域を
\[ D=\{(x,\ y) \; | \; x^2 \leqq y \leqq ax+b \} \]
とし,$D$の面積が$\displaystyle \frac{9}{2}$であるとする.座標平面上で,$x$座標,$y$座標が共に整数である点を格子点と呼ぶ.

(1)$a=0$のとき,$D$に含まれる格子点の個数を求めよ.
(2)$a,\ b$が共に整数であるとき,$D$に含まれる格子点の個数は,$a,\ b$の値によらず一定であることを示せ.
名古屋大学 国立 名古屋大学 2010年 第1問
$xy$平面上の長方形ABCDが次の条件(a),(b),(c)を満たしているとする.

\mon[(a)] 対角線ACとBDの交点は原点Oに一致する.
\mon[(b)] 直線ABの傾きは2である.
\mon[(c)] Aの$y$座標は,B,C,Dの$y$座標より大きい.

このとき,$a>0,\ b>0$として,辺ABの長さを$2\sqrt{5}a$,BCの長さを$2\sqrt{5}b$とおく.

(1)A,B,C,Dの座標を$a,\ b$で表せ.
(2)長方形ABCDが領域$x^2+(y-5)^2 \leqq 100$に含まれるための$a,\ b$に対する条件を求め,$ab$平面上に図示せよ.
信州大学 国立 信州大学 2010年 第2問
行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$は零行列ではなく,$A^2$が零行列となるとする.次の問に答えよ.

(1)$a+d=ad-bc=0$を示せ.
(2)行列$A$が表す一次変換によって,座標平面上の原点と任意の点P,Qは同一直線上に移ることを示せ.
信州大学 国立 信州大学 2010年 第1問
次の2つの曲線の両方に接する傾きが正の直線$\ell$が原点を通っているとする.
\begin{eqnarray}
& & y = mx^2+a \quad (m > 0,\ a > 0) \nonumber \\
& & y = nx^2+b \quad (n < 0,\ b < 0) \nonumber
\end{eqnarray}
このとき,次の問に答えよ.

(1)$m,\ n,\ a,\ b$の間に成り立つ関係式を求めよ.
(2)曲線$y = mx^2+a$と$\ell$および$y$軸で囲まれた図形の面積を$S_1$とし,曲線$y = nx^2+b$と$\ell$および$y$軸で囲まれた図形の面積を$S_2$とする.$\displaystyle \frac{S_1}{S_2}$を$a,\ b$で表せ.
金沢大学 国立 金沢大学 2010年 第4問
$a \ (a>0)$を定数とし,$f(x)=2a \log x - (\log x)^2$とする.関数$y = f(x)$のグラフは,$x$軸と点P$_1(x_1,\ 0)$,P$_2(x_2,\ 0) \ (x_1<x_2)$で交わっている.次の問いに答えよ.

(1)$x_1,\ x_2$の値を求めよ.また,$y = f(x)$の最大値と,そのときの$x$の値を求めよ.
(2)点P$_1$,P$_2$における$y=f(x)$の接線をそれぞれ$\ell_1,\ \ell_2$とする.$\ell_1$と$\ell_2$の交点の$x$座標を$X(a)$と表すとき,$\displaystyle \lim_{a \to \infty} X(a)$を求めよ.
(3)$a = 1$とするとき,$y = f(x)$のグラフと$x$軸で囲まれた図形の面積を求めよ.
奈良教育大学 国立 奈良教育大学 2010年 第4問
$2$つの曲線$y=\sin x,\ y=\cos 2x$と$2$つの直線$x=0,\ x=2\pi$によって囲まれた部分の面積を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。