タグ「直線」の検索結果

216ページ目:全2462問中2151問~2160問を表示)
岐阜薬科大学 公立 岐阜薬科大学 2011年 第4問
$A=\left( \begin{array}{cc}
a & 1 \\
1 & a
\end{array} \right),\ B=\left( \begin{array}{cc}
1 & a \\
a & 1
\end{array} \right)$について$C=AB$と定め,行列$C$の表す$1$次変換(移動)を$f$とする.ただし,$B \neq E$(単位行列),$a$は実数とする.

(1)行列の積$C=AB$を計算せよ.
(2)$1$次変換$f$によって,点$(0,\ 1)$を通る直線$\ell$上のすべての点がすべてその直線$\ell$上に移るとき,$a$の値と直線$\ell$の方程式を求めよ.
奈良県立医科大学 公立 奈良県立医科大学 2011年 第4問
$xy$平面において原点$\mathrm{O}(0,\ 0)$を中心とする半径$1$の円を$S$とし,円$S$の任意の点$\mathrm{P}$に対して,点$\mathrm{P}$における円$S$の接線を$L(\mathrm{P})$とおく.
\[ A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right) \]
を全ての成分が実数からなる$2$行$2$列の行列とし,$A$によって定まる$xy$平面の一次変換
\[ \left( \begin{array}{c}
x^\prime \\
y^\prime
\end{array} \right)=A \left( \begin{array}{c}
x \\
y
\end{array} \right) \]
を$\varphi$とおく.このとき,円$S$の任意の点$\mathrm{P}$に対して円$S$の点$\mathrm{Q}$が存在し,接線$L(\mathrm{P})$のいかなる点も$\varphi$によって接線$L(\mathrm{Q})$の点に移されると仮定する.

(1)円$S$の点$\mathrm{P}$の座標を$(s,\ t)$として,接線$L(\mathrm{P})$の方程式を求めよ.
(2)行列$A$は逆行列を持つことを証明せよ.
(3)円$S$の点$\mathrm{Q}$は円$S$の点$\mathrm{P}$により一意的に定まることを示し,点$\mathrm{Q}$の座標$(u,\ v)$を点$\mathrm{P}$の座標$(s,\ t)$及び行列$A$の成分$a,\ b,\ c,\ d$を用いて表示せよ.
(4)$xy$平面の一次変換$\varphi$は,原点$\mathrm{O}(0,\ 0)$を中心とする回転か,または原点$\mathrm{O}(0,\ 0)$を通るある直線$\ell$を対称軸とする対称変換のいずれかであることを証明せよ.
京都府立大学 公立 京都府立大学 2011年 第4問
座標平面上の楕円$C_1:4x^2+y^2=4$について,以下の問いに答えよ.

(1)$C_1$を$x$軸方向に$p$,$y$軸方向に$1$だけ平行移動した楕円を$C_2$とする.$1 \leqq k \leqq 2$を満たすすべての$k$に対して,直線$\ell:y=kx-3$と$C_2$が$2$個の共有点をもつとき,$p$の値の範囲を求めよ.
(2)$a,\ b,\ c,\ d,\ e$を定数とする.$C_1$を原点まわりに${75}^\circ$回転した$2$次曲線を
\[ C_3:x^2+axy+by^2+cx+dy+e=0 \]
とするとき,$a,\ b$の値を求めよ.
京都府立大学 公立 京都府立大学 2011年 第1問
$t>0$とする.平面上に$\triangle \mathrm{OAB}$と点$\mathrm{P}$がある.$\mathrm{P}$は$(2-t) \overrightarrow{\mathrm{PO}}+2(1-t) \overrightarrow{\mathrm{PA}}+3t \overrightarrow{\mathrm{PB}}=\overrightarrow{\mathrm{0}}$を満たす.直線$\mathrm{OP}$と直線$\mathrm{AB}$の交点を$\mathrm{C}$とする.$|\overrightarrow{\mathrm{OA}}|=a$,$|\overrightarrow{\mathrm{OB}}|=b$とする.以下の問いに答えよ.

(1)$\displaystyle \frac{|\overrightarrow{\mathrm{BC}}|}{|\overrightarrow{\mathrm{AC}}|}$を$t$を用いて表せ.

(2)線分$\mathrm{OC}$が$\angle \mathrm{AOB}$の$2$等分線となるとき,$\mathrm{C}$は辺$\mathrm{AB}$を$a:b$に内分する点であることを示せ.
(3)$(2)$のとき,$\triangle \mathrm{OAB}$の面積を$S_1$,$\triangle \mathrm{PAB}$の面積を$S_2$とする.$\displaystyle \frac{S_2}{S_1}$を$a,\ b$を用いて表せ.
一橋大学 国立 一橋大学 2010年 第2問
$a$を実数とする.傾きが$m$である2つの直線が,曲線$y=x^3-3ax^2$とそれぞれ点A,点Bで接している.

(1)線分ABの中点をCとすると,Cは曲線$y=x^3-3ax^2$上にあることを示せ.
(2)直線ABの方程式が$y=-x-1$であるとき,$a,\ m$の値を求めよ.
京都大学 国立 京都大学 2010年 第1問
次の各問に答えよ.

(1)座標平面上で,点$(1,\ 2)$を通り傾き$a$の直線と放物線$y=x^2$によって囲まれる部分の面積を$S(a)$とする.$a$が$0 \leqq a \leqq 6$の範囲を変化するとき,$S(a)$を最小にするような$a$の値を求めよ.
(2)$\triangle$ABCにおいて$\text{AB}=2,\ \text{AC}=1$とする.$\angle \text{BAC}$の二等分線と辺BCの交点をDとする.$\text{AD}=\text{BD}$となるとき,$\triangle$ABCの面積を求めよ.
大阪大学 国立 大阪大学 2010年 第2問
$0 < \theta < \displaystyle \frac{\pi}{2}$とする.2つの曲線
\[ C_1:x^2+3y^2=3, \quad C_2:\frac{x^2}{\cos^2 \theta} - \frac{y^2}{\sin^2 \theta} =2 \]
の交点のうち,$x$座標と$y$座標がともに正であるものをPとする.Pにおける$C_1,\ C_2$の接線をそれぞれ$\ell_1,\ \ell_2$とし,$y$軸と$\ell_1,\ \ell_2$の交点をそれぞれQ,Rとする.$\theta$が$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲を動くとき,線分QRの長さの最小値を求めよ.
神戸大学 国立 神戸大学 2010年 第3問
$\displaystyle f(x) =\frac{\log x}{x},\ g(x) = \frac{2 \log x}{x^2} \ (x > 0)$とする.以下の問に答えよ.ただし,自然
対数の底$e$について,$e=2.718 \cdots$であること,$\displaystyle \lim_{x \to \infty} \frac{\log x}{x}=0$であることを証明なしで用いてよい.

(1)2曲線$y = f(x)$と$y = g(x)$の共有点の座標をすべて求めよ.
(2)区間$x>0$において,関数$y = f(x)$と$y = g(x)$の増減,極値を調べ,2曲線$y = f(x),\ y = g(x)$のグラフの概形をかけ.グラフの変曲点は求めなくてよい.
(3)区間$1 \leqq x \leqq e$において,2曲線$y = f(x)$と$y = g(x)$,および直線$x = e$で囲まれた図形の面積を求めよ.
神戸大学 国立 神戸大学 2010年 第1問
実数$a,\ b$に対して,$f(x) = a(x-b)^2$とおく.ただし,$a$は正とする.放物線$y = f(x)$が直線$y = -4x+4$に接している.このとき,以下の問に答えよ.

(1)$b$を$a$で表せ.
(2)$0 \leqq x \leqq 2$において,$f(x)$の最大値$M(a)$と,最小値$m(a)$を求めよ.
(3)$a$が正の実数を動くとき,$M(a)$の最小値を求めよ.
神戸大学 国立 神戸大学 2010年 第2問
空間内に4点O,A,B,Cがあり,
\[ \text{OA} = 3,\ \text{OB} = \text{OC} = 4,\ \angle \text{BOC} = \angle \text{COA} = \angle \text{AOB} = \frac{\pi}{3} \]
であるとする.3点A,B,Cを通る平面に垂線OHをおろす.このとき,以下の問に答えよ.

(1)$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とし,$\overrightarrow{\mathrm{OH}}=r\overrightarrow{a}+s\overrightarrow{b}+t\overrightarrow{c}$と表すとき,$r,\ s,\ t$を求めよ.
(2)直線CHと直線ABの交点をDとするとき,長さの比$\text{CH}:\text{HD},\ \text{AD}:\text{DB}$をそれぞれ求めよ
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。