タグ「直線」の検索結果

212ページ目:全2462問中2111問~2120問を表示)
津田塾大学 私立 津田塾大学 2011年 第1問
次の問いに答えよ.

(1)$\displaystyle f(x)=e^{-x}+\int_0^x e^{-(x-t)} \sin t \, dt$とする.このとき,$f^\prime(x)+f(x)=\sin x$が成り立つことを示せ.
(2)座標空間において,原点$\mathrm{O}$と点$\mathrm{A}(1,\ 1,\ 1)$を通る直線を$\ell$とし,原点$\mathrm{O}$を通り直線$\ell$とのなす角が$\displaystyle \frac{\pi}{3}$である直線の$1$つを$m$とする.直線$m$を直線$\ell$のまわりに$1$回転してできる図形を$S$とする.点$\mathrm{P}(x,\ y,\ z)$が$S$上にあるならば,
\[ x^2+y^2+z^2+8xy+8yz+8zx=0 \]
が成り立つことを示せ.
津田塾大学 私立 津田塾大学 2011年 第1問
次の問に答えよ.

(1)$n$を自然数とする.次の式の値を求めよ.$1^2-2^2+3^2-4^2+\cdots+{(2n-1)}^2-{(2n)}^2$
(2)赤球$6$個と白球$4$個が入っている袋から$3$個の球を同時に取り出したとき,赤球が$2$個で白球が$1$個になる確率を求めよ.
(3)$p,\ q,\ r$は実数とする.平面上の点$\mathrm{P}(x,\ y)$に対して,点$\mathrm{Q}(x^\prime,\ y^\prime)$を
\[ \left\{ \begin{array}{l}
x^\prime=x+py \\
y^\prime=qx+ry
\end{array} \right. \]
で定める.直線$y=2x+1$を$\ell$とおく.点$\mathrm{P}$が直線$\ell$上を動くとき,常に点$\mathrm{Q}$も直線$\ell$上にあるための$p,\ q,\ r$の条件を求めよ.
津田塾大学 私立 津田塾大学 2011年 第3問
関数$y=x^2-x-4 |x-1|$のグラフを$C$とする.

(1)$C$と$2$つの点で接する直線$\ell$の式を求めよ.
(2)$C$と$\ell$を図示せよ.
(3)$C$と$\ell$で囲まれた図形の面積を求めよ.
津田塾大学 私立 津田塾大学 2011年 第3問
次の問に答えよ.

(1)不定積分$\displaystyle \int {(\log x)}^2 \, dx$を求めよ.
(2)関数$y=\log x$のグラフを$C$とする.$C$に接し,かつ原点を通る直線$\ell$の式を求めよ.
(3)$C$と$\ell$と$x$軸とで囲まれた図形を$x$軸のまわりに回転してできる立体の体積を求めよ.
津田塾大学 私立 津田塾大学 2011年 第4問
原点$\mathrm{O}(0,\ 0,\ 0)$と点$\mathrm{A}(1,\ 1,\ 1)$を通る直線上に点$\mathrm{M}$をとり,$xy$平面上に点$\mathrm{P}$をとる.$3$条件

(i) $\overrightarrow{\mathrm{MP}} \perp \overrightarrow{\mathrm{OA}}$
(ii) $\angle \mathrm{POA}={60}^\circ$
(iii) $\mathrm{MP}=1$

が同時に成り立つとき,点$\mathrm{M}$と点$\mathrm{P}$の座標を求めよ.
青山学院大学 私立 青山学院大学 2011年 第5問
曲線$y=e^{-x}$上の点$(1,\ e^{-1})$における接線と$x$軸の交点を$(a_1,\ 0)$とする.次に,$y=e^{-x}$上の点$(a_1,\ e^{-a_1})$における接線と$x$軸の交点を$(a_2,\ 0)$とする.以下,同様に$a_n (n=3,\ 4,\ 5,\ \cdots)$を定める.次の問に答えよ.

(1)$a_1$を求めよ.
(2)$a_n$を求めよ.
(3)曲線上の点$(a_n,\ e^{-a_n})$における接線と,直線$x=a_n$および$x$軸で囲まれた三角形の面積を$S_n$とする.$\displaystyle \sum_{n=1}^\infty S_n$を求めよ.
青山学院大学 私立 青山学院大学 2011年 第4問
実数$t$は$t>1$を満たすとする.点$\displaystyle \left( \frac{1}{2},\ t \right)$から,円$x^2+y^2=1$に相異なる$2$本の接線を引き,$2$つの接点を通る直線を$\ell$とする.

(1)直線$\ell$の方程式を$t$を用いて表せ.
(2)$t$を$t>1$の範囲で動かすとき,$t$によらず$\ell$が通る点がある.この点の座標を求めよ.
青山学院大学 私立 青山学院大学 2011年 第2問
四面体$\mathrm{OABC}$を考える.また$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおく.次の問に答えよ.

(1)線分$\mathrm{AB}$を$2:1$に内分する点を$\mathrm{D}$とする.このとき$\overrightarrow{\mathrm{OD}}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表すと
\[ \overrightarrow{\mathrm{OD}}=\frac{[ ]}{[ ]} \overrightarrow{a}+\frac{[ ]}{[ ]} \overrightarrow{b} \]
である.
(2)線分$\mathrm{BC}$を$1:3$に内分する点を$\mathrm{E}$とし,直線$\mathrm{CD}$と$\mathrm{AE}$の交点を$\mathrm{P}$とする.$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表すと
\[ \overrightarrow{\mathrm{OP}}=\frac{1}{[ ]} ([ ] \overrightarrow{a}+[ ] \overrightarrow{b}+[ ] \overrightarrow{c}) \]
である.
(3)四面体$\mathrm{OAPC}$の体積は,四面体$\mathrm{OABC}$の体積の$\displaystyle \frac{[ ]}{[ ]}$倍である.
早稲田大学 私立 早稲田大学 2011年 第6問
$A=\left( \begin{array}{cc}
1 & 2 \\
3 & 6
\end{array} \right)$とする.点$(x,\ y)$が$xy$平面上を動くとき,行列$A$による変換$\left( \begin{array}{c}
X \\
Y
\end{array} \right)=A \left( \begin{array}{c}
x \\
y
\end{array} \right)$で移される点$(X,\ Y)$は$XY$平面上の直線$\ell:Y=[ト]X$上を動く.

次に,行列$G=\left( \begin{array}{cc}
a & b \\
b & a
\end{array} \right)$が$AGA=A$を満たすとする.点$(X,\ Y)$が$\ell$上を動くとき,その各点で列ベクトル$G \left( \begin{array}{c}
X \\
Y
\end{array} \right)$が定まる.このとき,列ベクトル$G \left( \begin{array}{c}
X \\
Y
\end{array} \right)$の大きさは$X$の値により変化するが,いずれの場合においても$\displaystyle a=\frac{[ナ]}{[ニ]}$,$\displaystyle b=\frac{[ヌ]}{[ネ]}$のとき最小となる.ただし,$[ニ]$,$[ネ]$はできるだけ小さな自然数で答えること.
玉川大学 私立 玉川大学 2011年 第3問
$f(x)=x^4+2x^3-3x^2$について,次に答えよ.

(1)$f(x)={(x^2+x+a)}^2+bx+c$となる$a,\ b,\ c$を求めよ.
(2)曲線$y=f(x)$と直線$y=bx+c$が共有する点の$x$座標を求めよ.
(3)曲線$y=f(x)$と$2$点で接する直線の式を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。