タグ「直線」の検索結果

210ページ目:全2462問中2091問~2100問を表示)
東北工業大学 私立 東北工業大学 2011年 第1問
$2$次関数$y=ax^2+8x+10-a$について考える(ただし,$a \neq 0$).

(1)この$2$次関数のグラフが,$x$軸とただ一つの共有点を持ち,$a<7$ならば,$a=[ ]$である.またこのとき,$2$次関数のグラフの軸は直線$x=-[ ]$である.
(2)$a=4$のとき,定義域が$-2 \leqq x \leqq 1$の場合の最小値は$[ ]$,最大値は$[ ]$である.
(3)この$2$次関数のグラフの軸が直線$x=4$となるように$a$を定めたとき,頂点の$y$座標は$[ ]$である.
北海道科学大学 私立 北海道科学大学 2011年 第10問
円$\mathrm{O}$と$2$直線$\mathrm{AC}$,$\mathrm{BC}$が図のように$\mathrm{A}$,$\mathrm{B}$で接している.$\angle \mathrm{ACB}={48}^\circ$であるとき,
(図は省略)
\[ \angle \mathrm{OAB}=[ ],\ \angle \mathrm{CBD}=[ ] \]
である.ただし,$\mathrm{D}$は直線$\mathrm{AO}$と円$\mathrm{O}$との交点とする.
北海道薬科大学 私立 北海道薬科大学 2011年 第4問
$2$つの放物線
\[ C_1:y=x^2-6x+12,\quad C_2:y=x^2+6x+8 \]
の頂点同士を結ぶ直線を$\ell$とする.

(1)$C_1$の頂点の座標は$([ア],\ [イ])$であり,$C_2$の頂点の座標は$(-[ウ],\ -[エ])$である.
(2)$\ell$の方程式は$\displaystyle y=\frac{[オ]}{[カ]}x+[キ]$となる.
(3)$C_1$と$\ell$との交点の$x$座標は$[ク]$,$\displaystyle \frac{[ケコ]}{[サ]}$,$C_2$と$\ell$との交点の$x$座標は$-[シ]$,$\displaystyle -\frac{[ス]}{[セ]}$である.$C_1$と$\ell$とで囲まれた部分の面積と,$C_2$と$\ell$とで囲まれた部分の面積との和は$\displaystyle \frac{[ソ]}{[タチ]}$となる.
東北医科薬科大学 私立 東北医科薬科大学 2011年 第1問
関数
\[ y=f(x)=\left\{ \begin{array}{ll}
-x^2-12x & (x<0) \\
3x^2-12x+a & (0 \leqq x)
\end{array} \right. \]
を考える.関数$y=f(x)$の区間$0 \leqq x \leqq 6$における最小値が$-12$であるという.このとき,次の問に答えなさい.

(1)$a$の値は$[ア]$である.
(2)$f(x)=0$となる$x$の値を小さい方から並べると$x=[イウエ],\ [オ],\ [カ]$である.
(3)曲線$y=f(x)$の点$\mathrm{P}(k,\ -k^2-12k)$($k<0$とする)における接線$\ell$が点$(-1,\ 15)$を通るという.このとき,$k$の値は$[キク]$である.
(4)接線$\ell$と曲線$y=f(x)$の共有点は点$\mathrm{P}$と$([ケ],\ [コサ])$で,接線$\ell$と曲線$y=f(x)$で囲まれる部分の面積は$[シス]$である.
京都女子大学 私立 京都女子大学 2011年 第1問
次の各問に答えよ.

(1)$17028$の正の約数は何個あるか.また,$17028$を$2$つの$3$桁の整数の積として表せ.
(2)放物線$y=2x^2+(k-2)x+2k+1$と直線$y=(1-k)x+k+3$がただ$1$つの共有点を持つように$k$の値を定めよ.
(3)実数$x,\ y$が$x-y=x^3-y^3=\sqrt{3}$および$x+y \geqq 0$を満たすとき,$x+y$と$x^3+y^3$の値を求めよ.
久留米大学 私立 久留米大学 2011年 第3問
$x,\ y$は実数で,曲線$9x^2+16y^2-144=0$を$\ell$とする.

(1)曲線$\ell$上の点で,$x+y$の値の最大値は$[$4$]$である.
(2)座標平面上の第$1$象限において,曲線$\ell$上の点を$\mathrm{P}$とする.曲線$\ell$上の点$\mathrm{P}$における接線と,$x$軸,$y$軸とで囲まれる三角形の面積の最小値は$[$5$]$であり,このときの点$\mathrm{P}$の座標は$[$6$]$である.
久留米大学 私立 久留米大学 2011年 第4問
整数$k$に対して,曲線$y=4e^{-x}$と$x$軸,および直線$x=k$と$x=k+1$とで囲まれた図形の面積を$S_k$とする.同じく,この図形を$x$軸のまわりに回転してできる立体の体積を$V_k$とする.このとき,$S_k=[$7$]$,$V_k=[$8$]$であり,無限級数$\displaystyle \sum_{n=1}^\infty S_n$は$[$9$]$に,$\displaystyle \sum_{n=1}^\infty V_n$は$[$10$]$に収束する.
大同大学 私立 大同大学 2011年 第3問
原点$\mathrm{O}$を中心とする半径$3$の円を$C$とする.点$\mathrm{A}(5 \sqrt{2},\ 2 \sqrt{2})$を通り円$C$に接する直線で傾きが正のものを$\ell$とし,$C$と$\ell$の接点を$\mathrm{P}$とする.

(1)$\mathrm{OA}$,$\mathrm{AP}$を求めよ.
(2)直線$\mathrm{OA}$と$x$軸のなす角を$\displaystyle \alpha \left( 0<\alpha<\frac{\pi}{2} \right)$とし,$\angle \mathrm{OAP}=\beta$とおく.$\tan \alpha$,$\tan \beta$を求めよ.
(3)$\ell$の傾きを求めよ.
大同大学 私立 大同大学 2011年 第4問
$0<a<2$,$f(x)=x^5-a^4x$とする.

(1)曲線$y=f(x) (a \leqq x \leqq 2)$と直線$x=2$および$x$軸で囲まれる部分の面積$S(a)$を求めよ.
(2)曲線$y=f(x)$と$x$軸で囲まれる$2$つの部分の面積の和$T(a)$を求めよ.
(3)$S(a)+T(a)$を最小にする$a$の値を求めよ.
千葉工業大学 私立 千葉工業大学 2011年 第2問
次の各問に答えよ.

(1)円$C:x^2+y^2-4x+6y+8=0$の中心は$([ア],\ [イウ])$,半径は$\sqrt{[エ]}$である.直線$(m+3)x-my-6=0$が$C$と接するような定数$m$の値は$[オカ]$または$[キ]$である.
(2)$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.$F=(1-4 \sin \theta) \cos 2\theta$は$t=\sin \theta$を用いて表すと,
\[ F=[ク] t^3-[ケ] t^2-[コ] t+[サ] \]
となる.$F$は$\displaystyle \theta=\frac{[シ]}{[ス]} \pi$のとき,最小値$\displaystyle \frac{[セソ]}{[タ]}$をとる.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。