タグ「直線」の検索結果

207ページ目:全2462問中2061問~2070問を表示)
立教大学 私立 立教大学 2011年 第1問
次の空欄ア~ソに当てはまる数または式を記入せよ.

(1)$x$が$0<x<1$と$\displaystyle x^2+\frac{1}{x^2}=3$を満たすとき,$x^3$の値は$[ア]$である.
(2)不等式$\displaystyle \log_5 \left( \frac{x+1}{2} \right)+\log_5(x-4)<2$の解は$[イ]<x<[ウ]$である.
(3)$\sqrt{3} \sin \theta-\cos \theta>1 (-\pi<\theta<\pi)$を満たす$\theta$の範囲は,$[エ]<\theta<[オ]$である.
(4)$3$次方程式$x^3+3x^2-24x-a=0$が,異なる$3$つの実数解をもつような定数$a$の値の範囲は,$[カ]<a<[キ]$である.
(5)積分$\displaystyle \int_{-3}^3 |x^2-1| \, dx$の値は$[ク]$である.
(6)$2$次不等式$ax^2-4x+b<0$の解が$-3<x<5$であるとき,定数$a$は$[ケ]$であり,定数$b$は$[コ]$である.
(7)$2$つのベクトル$\overrightarrow{a}=(2,\ -1,\ 1)$と$\overrightarrow{b}=(x-2,\ -x,\ 4)$のなす角が$30^\circ$のとき,$x$の値は$[サ]$である.
(8)点$(x,\ y)$が直線$2x+3y=4$の上を動くとする.$4^x+8^y$が最小値をとるとき,$x,\ y$の値は$x=[シ]$,$y=[ス]$である.
(9)三角形$\mathrm{ABC}$の$\mathrm{A}$における角度は$45^\circ$,$\mathrm{C}$における角度は$75^\circ$,辺$\mathrm{AC}$の長さが$6$であるとき,辺$\mathrm{BC}$の長さは$[セ]$である.
\mon $0,\ 1,\ 2,\ 3$の数字から選んで$4$桁の自然数を作るとき,同じ数字を何回用いてもよいとすると,$2$の倍数でない自然数は$[ソ]$個できる.
西南学院大学 私立 西南学院大学 2011年 第4問
$xy$平面上に次に示す,$C$と$\ell$がある.
\[ \begin{array}{l}
C:y=|x^2-4| \\
\ell:y=2x+4
\end{array} \]
このとき以下の問に答えよ.

(1)$C$と$\ell$の交点は$x$座標の小さい順に
\[ ([ネノ],\ [ハ])$,$([ヒ],\ [フ])$,$([ヘ],\ [ホマ]) \]
である.
(2)$C$と$\ell$で囲まれる図形の面積は$\displaystyle \frac{[ミム]}{[メ]}$である.
立教大学 私立 立教大学 2011年 第3問
座標平面上の放物線$\displaystyle y=\frac{1}{4}x^2$について,その頂点を$\mathrm{O}$とし,この放物線上に異なる$2$点$\mathrm{A}$,$\mathrm{B}$をとる.また$\mathrm{A}$,$\mathrm{B}$は頂点$\mathrm{O}$と異なる点で,$\angle \mathrm{AOB}$が直角になるものとする.点$\mathrm{A}$,$\mathrm{B}$の$x$座標をそれぞれ$a,\ b$とし,$a+b=t$として,次の問に答えよ.

(1)$\angle \mathrm{AOB}$が直角となる条件を$a,\ b$を用いて表せ.
(2)$t$を用いて直線$\mathrm{AB}$の方程式を求めよ.
(3)頂点$\mathrm{O}$から直線$\mathrm{AB}$におろした垂線が,直線$\mathrm{AB}$と交わる点を$\mathrm{H}$とするとき,$t$を用いて直線$\mathrm{OH}$の方程式を求めよ.
(4)$\mathrm{A}$,$\mathrm{B}$が放物線上を動くとき,$t$を用いて点$\mathrm{H}$の座標を求めよ.
上智大学 私立 上智大学 2011年 第2問
座標平面上に曲線$C:y=-x^2$および,$C$上の$2$点$\mathrm{A}(a,\ -a^2)$,$\mathrm{B}(b,\ -b^2)$(ただし$a<b$)を考える.$\mathrm{A}$における$C$の接線を$\ell$,$\mathrm{B}$における$C$の接線を$m$とする.$2$直線$\ell$,$m$の交点を$\mathrm{P}(x,\ y)$とする.

(1)$\mathrm{P}(x,\ y)$の各座標を$a,\ b$で表すと,
\[ x=\frac{[ク]}{[ケ]}a+\frac{[コ]}{[サ]}b,\quad y=[シ]ab \]
である.
(2)$\ell$と$m$が直交するように$\mathrm{A}$,$\mathrm{B}$が$C$上を動くとき,$\mathrm{P}(x,\ y)$は常に
\[ [ス]x+[セ]y-1=0 \]
を満たす.
(3)$\angle \mathrm{APB}=135^\circ$であるように$\mathrm{A}$,$\mathrm{B}$が$C$上を動くとき,$\mathrm{P}(x,\ y)$は常に
\[ [ソ]x^2+[タ] \left( y+\frac{[チ]}{[ツ]} \right)^2+1=0 \]
を満たし,$x=0$のとき$\mathrm{P}(0,\ y)$の$y$座標は
\[ \frac{[テ]}{[ト]}+\frac{[ナ]}{[ニ]} \sqrt{[ヌ]} \]
である.
立教大学 私立 立教大学 2011年 第3問
放物線$y=x^2$上の点$(a,\ a^2)$を$\mathrm{A}$とし,点$\mathrm{A}$における放物線の接線を$\ell$とする.ただし,$a>0$とする.また,$x$軸上の点$(a,\ 0)$の直線$\ell$について対称な点を$\mathrm{B}$とし,点$\mathrm{A}$,$\mathrm{B}$を通る直線を$m$とする.このとき,次の問$(1)$~$(4)$に答えよ.

(1)直線$\ell$と$x$軸の正の向きとのなす角を$\theta$とし,また,直線$m$と$x$軸の正の向きとのなす角を$\gamma$とする.$\gamma$を$\theta$と$\pi$を用いて表せ.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$,$\displaystyle -\frac{\pi}{2}<\gamma<\frac{\pi}{2}$とする.
(2)直線$m$の傾き$\tan \gamma$を$\tan \theta$で表せ.
(3)直線$m$の方程式を$a$を用いて表せ.
(4)直線$m$が,$a$の値によらず,必ず通過する点の座標を求めよ.
上智大学 私立 上智大学 2011年 第2問
底面の円の半径が$3 \; \mathrm{cm}$,高さが$6 \; \mathrm{cm}$の直円錐を考える.直円錐の頂点を$\mathrm{P}$,底面の円の中心を$\mathrm{Q}$とし,線分$\mathrm{PQ}$を$2:1$に内分する点を$\mathrm{O}$とする.底面の円の円周を$C_1$,$\mathrm{O}$を通り底面と平行な平面が直円錐と交わってできる円の円周を$C_2$とする.$2$点$\mathrm{A}$,$\mathrm{B}$がそれぞれ$C_1$,$C_2$上を頂点$\mathrm{P}$から見て左回りに移動している.点$\mathrm{A}$の速さは$3 \pi \,\mathrm{cm}/$秒,点$\mathrm{B}$の速さは$\pi \,\mathrm{cm}/$秒であり,時刻$t=0$において,$3$点$\mathrm{P}$,$\mathrm{B}$,$\mathrm{A}$は一直線上にあるとする.

(1)$\mathrm{A}$の角速度は$[コ] \pi$ラジアン$/$秒であり,$\mathrm{B}$の角速度は$\displaystyle \frac{[サ]}{[シ]} \pi$ラジアン$/$秒である.ただし,$\mathrm{A}$の角速度とは,動径$\mathrm{QA}$が$1$秒間に回転する角の大きさのことであり,$\mathrm{B}$の角速度とは,動径$\mathrm{OB}$が$1$秒間に回転する角の大きさのことである.
(2)線分$\mathrm{AB}$の長さを時刻$t$の関数で表すと
\[ \sqrt{[ス]-[セ] \cos \frac{\pi}{2}t } \mathrm{cm} \]
である.
(3)$\cos \angle \mathrm{AOB}$を時刻$t$の関数で表すと
\[ \frac{[ソ]}{\sqrt{[タ]}} \cos \frac{\pi}{2} t \]
である.
(4)三角形$\mathrm{AOB}$の面積を時刻$t$の関数で表すと
\[ \sqrt{[チ]-[ツ] \cos^2 \frac{\pi}{2}t } \mathrm{cm}^2 \]
である.
(5)$3$点$\mathrm{A}$,$\mathrm{O}$,$\mathrm{B}$を含む平面を$S$とする.$\mathrm{Q}$を通り,$S$と直交する直線を$\ell$とし,$\ell$と$S$の交点を$\mathrm{H}$とする.$\displaystyle t=\frac{1}{3}$のとき,線分$\mathrm{QH}$の長さは
\[ \frac{[テ]}{[ト]} \mathrm{cm} \]
である.
上智大学 私立 上智大学 2011年 第3問
座標平面において,動点$\mathrm{P}$の座標$(x,\ y)$が時刻$t$の関数として
\[ x=t^{\frac{1}{4}} (1-t)^{\frac{3}{4}},\quad y=t^{\frac{3}{4}} (1-t)^{\frac{1}{4}} \quad (0 \leqq t \leqq 1) \]
で与えられている.

(1)動点$\mathrm{P}$の$x$座標が最大になるのは$\displaystyle t=\frac{[ナ]}{[ニ]}$のときであり,$y$座標が最大になるのは$\displaystyle t=\frac{[ヌ]}{[ネ]}$のときである.
(2)$0<t<1$のとき,動点$\mathrm{P}$の速さの最小値は$\displaystyle \frac{\sqrt{[ノ]}}{[ハ]}$である.
(3)動点$\mathrm{P}$が直線$y=x$上に来るのは$t=0$のとき,$\displaystyle t=\frac{[ヒ]}{[フ]}$のとき,$t=1$のときの$3$回である.
(4)$t$が$0 \leqq t \leqq 1$の範囲を動くとき,動点$\mathrm{P}$の描く曲線を$L$とする.$L$で囲まれる図形の面積は$\displaystyle \frac{[ヘ]}{[ホ]}$である.
上智大学 私立 上智大学 2011年 第2問
$\mathrm{O}$を原点とする座標平面上に,放物線$F:y=x^2+1$および,点$\mathrm{A}(5,\ 0)$を中心とする半径$4$の円$C$がある.$F$上に点$\mathrm{P}(t,\ t^2+1)$,$C$上に点$\mathrm{Q}(a,\ b)$をとる.

(1)$\mathrm{P}$における放物線$F$の接線と直線$\mathrm{AP}$とが直交するとき,線分$\mathrm{AP}$の長さは$[タ] \sqrt{[チ]}$である.
(2)$\mathrm{Q}$を固定し,$\mathrm{P}$のみが動くとする.$\triangle \mathrm{OPQ}$の面積は$\displaystyle t=\frac{[ツ]}{[テ]} \frac{b}{a}$で最小値をとる.その最小値を$a$で表すと
\[ \frac{1}{8} \left( [ト]a+\frac{[ナ]}{a}+[ニ] \right) \]
である.
(3)$\mathrm{P}$,$\mathrm{Q}$がともに動くとする.$\triangle \mathrm{OPQ}$の面積は$\displaystyle a=\frac{[ヌ]}{[ネ]} \sqrt{[ノ]}$で最小値
\[ \frac{[ハ]}{[ヒ]}+\frac{[フ]}{[ヘ]} \sqrt{[ホ]} \]
をとる.
日本女子大学 私立 日本女子大学 2011年 第1問
$\triangle \mathrm{ABC}$において,頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に向かい合う辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$の長さをそれぞれ$a,\ b,\ c$で表す.$a=4$,$b=5$,$c=6$のとき,次の問いに答えよ.

(1)$\sin \angle \mathrm{A}$の値を求めよ.
(2)この三角形の面積$S$を求めよ.
(3)この三角形の外接円の半径$R$を求めよ.
(4)この三角形の内接円の半径$r$を求めよ.
(5)図のように,この三角形の辺$\mathrm{AB}$と辺$\mathrm{AC}$の延長および辺$\mathrm{BC}$に接する円の半径$\ell$を求めよ.
(図は省略)
日本女子大学 私立 日本女子大学 2011年 第2問
数直線上を動く点$\mathrm{P}$がある.原点を出発して,さいころを$1$回振るごとに,$5$以上の目が出たら$+3$だけ,$4$以下の目が出たら$-1$だけ点$\mathrm{P}$の位置が数直線上で移動する.

(1)さいころを$4$回振るとき,点$\mathrm{P}$がちょうど$4$の位置にくる確率を求めよ.
(2)さいころを$1$回振るとき,点$\mathrm{P}$の位置の期待値を求めよ.
(3)さいころを$4$回振るとき,点$\mathrm{P}$の位置の期待値を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。