タグ「直線」の検索結果

205ページ目:全2462問中2041問~2050問を表示)
明治大学 私立 明治大学 2011年 第2問
曲線$C:y=x^2$上に,$3$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2)$,$\mathrm{B}^\prime (-b,\ b^2)$が与えられている.ただし,$-b<a<0<b$とする.

(1)$\mathrm{A}$,$\mathrm{B}$を結ぶ直線$\ell$の方程式は,$[ ]$である.
(2)点$\mathrm{P}(p,\ p^2)$を通り,$y$軸に平行な直線が$\ell$と交わる点を$\mathrm{Q}$とする.ただし,$a<p<b$とする.$\mathrm{PQ}$の長さは,$[ ]$である.
(3)$\mathrm{A}$,$\mathrm{B}$を固定して,$\mathrm{P}$が$C$上で$\mathrm{A}$,$\mathrm{B}$の間を動くとき,$\triangle \mathrm{ABP}$の面積の最大値は,$[ ]$である.
(4)$\mathrm{B}$,$\mathrm{B}^\prime$を固定して,$\mathrm{A}$,$\mathrm{P}$が$C$上で$\mathrm{B}$,$\mathrm{B}^\prime$の間を動くとき,四角形$\mathrm{BB}^\prime \mathrm{AP}$の面積の最大値を求めよ.またこのときの$\mathrm{A}$,$\mathrm{P}$の位置を求めよ.
明治大学 私立 明治大学 2011年 第3問
次の連立不等式で表される領域$D$を考える.
\[ \left\{ \begin{array}{l}
\displaystyle \left( x-\frac{1}{2} \right)^2+y^2 \leqq 1 \\
\displaystyle y \leqq -2x+\frac{3}{2} \\
\displaystyle y \leqq x+\frac{7}{10}
\end{array} \right. \]
以下の問に答えなさい.

(1)$y$切片が$k$で,直線$\displaystyle y=-2x+\frac{3}{2}$に垂直な直線を$\ell$とする.直線$\ell$が領域$D$と共有点を持つとき,$k$のとる範囲は,
\[ -\frac{[チ]}{[ツ]}-\frac{\sqrt{[テ]}}{[ト]} \leqq k \leqq \frac{[ナ]}{[ニ]} \]
である.
(2)直線$\ell$が領域$D$で切り取られる線分の長さを$L$とおく.$L$が最大となるのは,$\displaystyle k=-\frac{[ヌ]}{[ネ]}$のときであり,そのとき,$\displaystyle L=[ノ]+\frac{\sqrt{[ハ]}}{[ヒフ]}$となる.
南山大学 私立 南山大学 2011年 第2問
座標平面上に放物線$C:y=x^2$と$4$点$\mathrm{P}(p,\ p^2)$,$\mathrm{Q}(-p,\ p^2)$,$\mathrm{R}(-p,\ p^2+2p)$,$\mathrm{S}(p,\ p^2+2p)$がある.また,$3$次関数$y=f(x)$は$x=-p$で極小値$p^2$,$x=p$で極大値$p^2+2p$をとる.ただし,$p>0$とする.

(1)$C$と線分$\mathrm{PQ}$で囲まれた部分の面積と正方形$\mathrm{PQRS}$の面積が等しくなる$p$の値を求めよ.
(2)$f(x)$を$p$で表せ.
(3)$\mathrm{P}$における$C$の接線を$\ell$とする.曲線$y=f(x)$上の点$(a,\ f(a))$における接線が$\ell$と垂直になるとき,$a$を$p$で表せ.
南山大学 私立 南山大学 2011年 第1問
$[ ]$の中に答を入れよ.

(1)放物線$y=x^2+2x$を$x$軸方向に$p$,$y$軸方向に$\displaystyle \frac{1}{2}p^2$だけ平行移動して得られる放物線$C$の方程式を求めると$y=[ア]$である.$C$と直線$y=x$が異なる$2$つの点で交わるような$p$の値の範囲を求めると$[イ]$である.
(2)$3$次の整式$F(x)$を考える.$F(x)$の$x^3$の項の係数は$1$であり,$xF(x)$を$x^2-3x+2$で割った余りは$2x$である.このとき,$F(2)$の値は$F(2)=[ウ]$であり,さらに,$F(-1)=2$であるとき,$F(-2)$の値は$F(-2)=[エ]$である.
(3)$\triangle \mathrm{ABC}$において$3$辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$の長さがそれぞれ$2,\ 3,\ x$であるとする.このとき,$\triangle \mathrm{ABC}$の面積が最大になるような$x$の値を求めると$x=[オ]$である.また,$\angle \mathrm{ACB}$が最大になるような$x$の値を求めると$x=[カ]$である.
(4)$0<\alpha<\beta<\pi$のとき,座標平面上で,$2$点$\mathrm{A}(2 \cos \alpha,\ 2 \sin \alpha)$,$\mathrm{B}(2 \cos \alpha+\cos \beta,\ 2 \sin \alpha+\sin \beta)$と原点$\mathrm{O}$を頂点とする$\triangle \mathrm{OAB}$を考える.$\mathrm{B}$の座標が$(1,\ 1)$のとき,$\cos \angle \mathrm{AOB}$の値は$\cos \angle \mathrm{AOB}=[キ]$であり,$\cos \alpha$の値は$\cos \alpha=[ク]$である.
南山大学 私立 南山大学 2011年 第1問
$[ ]$の中に答を入れよ.

(1)循環小数$1. \dot{4} \dot{6}$を分数で表すと$[ア]$である.$1. \dot{4} \dot{6}+2. \dot{7}$を循環小数で表すと$[イ]$となる.
(2)$f(\theta)=\sqrt{3} \sin 2\theta-\cos 2\theta+\sqrt{3} \sin \theta+\cos \theta$とする.$x=\sqrt{3} \sin \theta+\cos \theta$として,$f(\theta)$を$x$で表すと$[ウ]$となる.$0 \leqq \theta \leqq \pi$であるとき,関数$f(\theta)$の最大値は$[エ]$である.
(3)$\displaystyle \left( \frac{4}{3} \right)^n$の整数部分が$10$桁になるような整数$n$は$[オ]$個ある.$n$がその中で$4$番目に小さい整数であるとき,$\displaystyle \left( \frac{4}{3} \right)^n$の最高位の数字は$[カ]$である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
(4)円$(x-2)^2+y^2=1$と直線$y=mx$が異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わるとき,$m$の値の範囲は$[キ]$であり,原点を$\mathrm{O}$とするとき,線分$\mathrm{OP}$の長さと線分$\mathrm{OQ}$の長さの積は$[ク]$である.
(5)図のように半径$r$の半球面に円柱が内接している.円柱の体積が最大になるのは円柱の高さが$[ケ]$のときであり,その円柱の体積は$[コ]$である.
(図は省略)
南山大学 私立 南山大学 2011年 第2問
点$\mathrm{A}(1,\ 0)$を通る傾き$k$の直線を$\ell$とする.$\ell$と放物線$C:y=-x^2-2x+4$の$2$つの交点を$\mathrm{P}(\alpha,\ -\alpha^2-2 \alpha+4)$,$\mathrm{Q}(\beta,\ -\beta^2-2 \beta+4)$とする.ただし,$\alpha<\beta$である.

(1)$\beta-\alpha$を$k$を用いて表せ.
(2)$\beta-\alpha$が最小となるときの$k$の値を求めよ.
(3)$(2)$のとき,$\ell$と$C$で囲まれた図形の面積を求めよ.
(4)$(2)$のとき,$C$上を$\mathrm{P}$から$\mathrm{Q}$まで動く点を$\mathrm{R}$とする.線分$\mathrm{AR}$の中点$\mathrm{M}$の軌跡を求めよ.
南山大学 私立 南山大学 2011年 第2問
中心の座標がそれぞれ$(-1,\ a)$,$(1,\ b)$で,ともに$x$軸に接している$2$つの円がある.これらの円は点$\mathrm{P}$で互いに接している.ただし,$a,\ b>0$とする.

(1)$b$を$a$で表せ.
(2)$\mathrm{P}$の座標を$a$で表せ.
(3)$\mathrm{P}$で$2$つの円に接する直線はある定点を通る.この定点の座標を求めよ.
(4)$\mathrm{P}$の軌跡を求めよ.
(図は省略)
南山大学 私立 南山大学 2011年 第1問
$[ ]$の中に答を入れよ.

(1)$a,\ b$を実数($a \neq b$)とする.$2$つの$2$次関数
\[ y=x^2+ax+b,\quad y=x^2+bx+a \]
の最小値が同じであるとき,$a$を用いて$b$を表すと$b=[ア]$である.このとき,$2$つの$2$次関数のグラフの交点の座標は$[イ]$である.

(2)$2$つの行列$A=\left( \begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6
\end{array} \right)$,$B=\left( \begin{array}{cc}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array} \right)$の積$AB$を求めると$AB=[ウ]$である.$2$行$2$列の行列$C$で表される$1$次変換による$2$点$(1,\ 1)$,$(2,\ 3)$の像が,それぞれ,$(-3,\ 5)$,$(-8,\ 12)$であるとき,行列$C$を求めると$C=[エ]$である.
(3)$\alpha,\ \beta$は$0 \leqq \alpha < 2\pi$,$0 \leqq \beta < 2\pi$を満たす実数とし,$a=\cos \alpha$,$b=\cos \beta$とする.$A=\sin (\alpha+\beta) \sin (\alpha-\beta)$を$a$と$b$で表すと$A=[オ]$であり,$A$の値が$1$となるときの$\beta$の値は$\beta=[カ]$である.
(4)$k$を正の実数とする.直線$y=kx$と円$x^2+(y-3)^2=4$が異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わるとき,$k$の値の範囲は$[キ]$である.また,線分$\mathrm{PQ}$の長さが$2$となるのは,$k=[ク]$のときである.
(5)$5$人でじゃんけんを$1$回するとき,$1$人だけが勝つ確率$p$は$p=[ケ]$である.また,$5$人のじゃんけんを$1$人だけが勝つまで繰り返すとき,$n$回以内に$1$人だけが勝って終わる確率$q$を$n$を用いて表すと$q=[コ]$である.
南山大学 私立 南山大学 2011年 第2問
座標平面上に,放物線$C:y=x^2-2x+1$と点$\mathrm{A}(1,\ -1)$がある.$\mathrm{A}$を通る$C$の接線のうち,傾きが負のものを$\ell$とする.

(1)$\ell$の方程式を求めよ.
(2)$\ell$に関して,$C$上の点$\displaystyle \mathrm{P} \left( \frac{5}{4},\ \frac{1}{16} \right)$と線対称な点を$\mathrm{Q}$とする.$\mathrm{Q}$の座標を求め,$C$,$\ell$,$\mathrm{P}$,$\mathrm{Q}$を同一平面上に図示せよ.
(3)$\ell$に関して,$y$軸と線対称な直線を$m$とする.$m$の方程式を求めよ.
(4)$\ell$に関して,$C$と線対称な曲線を$D$とする.$D$と$y$軸とで囲まれた部分の面積を求めよ.
南山大学 私立 南山大学 2011年 第2問
曲線$\displaystyle C:y=\frac{e^{a(x+2)}}{a} (a>0)$と原点$\mathrm{O}$から$C$に引いた接線$\ell$を考える.

(1)$\ell$の方程式を求めよ.
(2)$C$と$\ell$と$y$軸とで囲まれた部分の面積$S$を$a$を用いて表せ.
(3)(2)の$S$について,$S$を最小にする$a$の値と$S$の最小値を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。