タグ「直線」の検索結果

199ページ目:全2462問中1981問~1990問を表示)
お茶の水女子大学 国立 お茶の水女子大学 2011年 第1問
$xy$平面上の$2$つの放物線$C_1,\ C_2$を考える.
\[ C_1:y=-x^2+4x,\quad C_2:y=x^2-2x \]

(1)$C_1,\ C_2$の原点とは異なる交点$\mathrm{A}$の座標と$C_2$の頂点$\mathrm{B}$の座標を求めよ.
(2)点$\mathrm{P}(x_1,\ y_1)$から$2$点$\mathrm{A}$,$\mathrm{B}$を通る直線$\ell$におろした垂線の足を$\mathrm{H}$とする.$\mathrm{H}$の座標を$x_1,\ y_1$を用いて表せ.ただし点$\mathrm{P}$は直線$\ell$上にないものとする.
(3)点$\mathrm{P}(x_1,\ y_1)$が$C_1$上にあるとき,三角形$\mathrm{ABP}$の面積を$x_1$の式で表せ.
(4)点$\mathrm{P}$が$C_1$上を原点から$\mathrm{A}$まで動くとき,三角形$\mathrm{ABP}$の面積の最大値とそのときの$\mathrm{P}$の座標を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2011年 第1問
$xy$平面上の$2$つの放物線$C_1,\ C_2$を考える.
\[ C_1:y=-x^2+4x,\quad C_2:y=x^2-2x \]

(1)$C_1,\ C_2$の原点とは異なる交点$\mathrm{A}$の座標と$C_2$の頂点$\mathrm{B}$の座標を求めよ.
(2)点$\mathrm{P}(x_1,\ y_1)$から$2$点$\mathrm{A}$,$\mathrm{B}$を通る直線$\ell$におろした垂線の足を$\mathrm{H}$とする.$\mathrm{H}$の座標を$x_1,\ y_1$を用いて表せ.ただし点$\mathrm{P}$は直線$\ell$上にないものとする.
(3)点$\mathrm{P}(x_1,\ y_1)$が$C_1$上にあるとき,三角形$\mathrm{ABP}$の面積を$x_1$の式で表せ.
(4)点$\mathrm{P}$が$C_1$上を原点から$\mathrm{A}$まで動くとき,三角形$\mathrm{ABP}$の面積の最大値とそのときの$\mathrm{P}$の座標を求めよ.
鹿児島大学 国立 鹿児島大学 2011年 第6問
曲線$C$は極方程式$r=2 \cos \theta$で定義されているとする.このとき,次の各問いに答えよ.

(1)曲線$C$を直交座標$(x,\ y)$に関する方程式で表し,さらに図示せよ.
(2)点$(-1,\ 0)$を通る傾き$k$の直線を考える.この直線が曲線$C$と$2$点で交わるような$k$の値の範囲を求めよ.
(3)(2)のもとで,$2$交点の中点の軌跡を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2011年 第3問
次の問いに答えよ.

(1)不定積分$\displaystyle \int \frac{1}{x^2} \log x \, dx$および$\displaystyle \int \frac{1}{x^2} (\log x)^2 \, dx$を求めよ.
(2)実数$a$に対して,曲線$\displaystyle y=\frac{1}{x}(a+\log x) \ (1 \leqq x \leqq e)$と$x$軸および2直線$x=1,\ x=e$で囲まれた部分を,$x$軸のまわりに1回転させてできる立体の体積を$V$とする.$V$を$a$を用いて表せ.また,$a$が実数全体を動くとき,$V$を最小とする$a$の値を求めよ.
小樽商科大学 国立 小樽商科大学 2011年 第4問
座標平面上に点$\displaystyle \mathrm{A} \left( 12,\ \frac{15}{2} \right)$と放物線$C:y=x^2$がある.放物線$C$上に点$\mathrm{P}$があり,点$\mathrm{P}$における放物線$C$の接線は,$2$点$\mathrm{A}$,$\mathrm{P}$を通る直線に垂直である.このとき,点$\mathrm{P}$の座標を求めよ.
長岡技術科学大学 国立 長岡技術科学大学 2011年 第3問
曲線$C:y=e^{2x}$上の点$\mathrm{P}(t,\ e^{2t})$における接線$\ell$と$x$軸との交点を$\mathrm{Q}$とする.以下の問いに答えなさい.

(1)$\mathrm{Q}$が$x$軸の正の部分にあるような$t$の範囲を求めなさい.
(2)$t$が前問の範囲にあるとき,$C$および$3$直線$\ell,\ y=0,\ x=0$で囲まれる部分の面積$S(t)$を求めなさい.
旭川医科大学 国立 旭川医科大学 2011年 第2問
平面上に正三角形でない鋭角三角形$\mathrm{ABC}$が与えられている.辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$の長さをそれぞれ$a,\ b,\ c$とし,$\displaystyle s=\frac{a+b+c}{2}$とおく.さらに,辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$をそれぞれ$s-c:s-b,\ s-a:s-c,\ s-b:s-a$に内分する点を$\mathrm{X}$,$\mathrm{Y}$,$\mathrm{Z}$とする.また,$\mathrm{O}$を原点とする.次の問いに答えよ.

(1)点Nを$\displaystyle \overrightarrow{\mathrm{ON}}=\frac{(s-a)\overrightarrow{\mathrm{OA}}+(s-b)\overrightarrow{\mathrm{OB}}+(s-c)\overrightarrow{\mathrm{OC}}}{s}$と定義するとき,$3$直線$\mathrm{AX}$,$\mathrm{BY}$,$\mathrm{CZ}$は$\mathrm{N}$で交わることを示せ.
(2)$\mathrm{P}$を$\triangle \mathrm{ABC}$の内部の点,$\triangle \mathrm{PBC}$,$\triangle \mathrm{PCA}$,$\triangle \mathrm{PAB}$の面積をそれぞれ$S_A,\ S_B,\ S_C$とするとき,
\[ \overrightarrow{\mathrm{OP}}=\frac{S_A\overrightarrow{\mathrm{OA}}+S_B\overrightarrow{\mathrm{OB}}+S_C\overrightarrow{\mathrm{OC}}}{S_A+S_B+S_C} \]
と表される.このことを用いて,$\triangle \mathrm{ABC}$の外心を$\mathrm{Q}$とするとき,$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$,$a$,$b$,$c$を用いて表せ.
(3)$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とする.点$\mathrm{N}$が$\mathrm{Q}$と$\mathrm{G}$を通る直線上にあるとき,$\triangle \mathrm{ABC}$は$2$等辺三角形であることを示せ.
高知大学 国立 高知大学 2011年 第3問
方程式$x^2+y^2-2x+6y-6=0$で表される図形を$C$とする.このとき,次の問いに答えよ.

(1)図形$C$を図示せよ.
(2)直線$2x+3y=k$が,図形$C$を2等分するような定数$k$の値を求めよ.
(3)図形$C$と直線$2x+3y=k$が異なる共有点を2個もつような定数$k$の値の範囲を求めよ.
(4)図形$C$に接し,傾きが$\displaystyle -\frac{2}{3}$である直線の方程式を求めよ.
福井大学 国立 福井大学 2011年 第3問
楕円$\displaystyle C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 \ (a>b>0)$上に2点$\mathrm{P}(0,\ -b)$,$\mathrm{Q}(a \cos \theta,\ b \sin \theta)$をとる.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$である.$\mathrm{Q}$における$C$の接線を$\ell$とし,$\mathrm{P}$を通り$\ell$に平行な直線と$C$との交点のうち$\mathrm{P}$と異なるものを$\mathrm{R}$とおく.このとき以下の問いに答えよ.

(1)$\mathrm{R}$の座標を求めよ.
(2)$\theta$が$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲を動くとき,$\triangle \mathrm{PQR}$の面積の最大値とそのときの$\mathrm{Q}$の座標を求めよ.
(3)$C$の焦点のうち$x$座標が正のものを$\mathrm{F}$とする.(2)で求めた$\mathrm{Q}$の$x$座標と$\mathrm{F}$の$x$座標の大小を比較せよ.
京都教育大学 国立 京都教育大学 2011年 第5問
放物線$C:y=-x^2+1$上の異なる$2$点$\mathrm{A}(a,\ -a^2+1)$,$\mathrm{B}(b,\ -b^2+1)$におけるそれぞれの接線$\ell,\ m$が直交するとする.次の問に答えよ.

(1)任意の実数$r$に対して
\[ \alpha+\beta=r,\quad \alpha\beta=-\frac{1}{4} \]
をみたす実数$\alpha,\ \beta$が存在することを示せ.
(2)$\mathrm{A}$と$\mathrm{B}$が上の条件をみたしながら動くとき,直線$\mathrm{AB}$が$\mathrm{A}$と$\mathrm{B}$の取り方によらず常に通る点の座標を求めよ.
(3)$\ell$と$m$の交点の軌跡を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。