タグ「直線」の検索結果

197ページ目:全2462問中1961問~1970問を表示)
山形大学 国立 山形大学 2011年 第1問
座標平面において,点$(2,\ 0)$を中心とする半径2の円を$C$とする.点$(1,\ 0)$を通る直線$\ell_1$と円$C$との交点をA,Bとし,点$(3,\ 0)$を通る直線$\ell_2$と円$C$との交点をP,Qとする.さらに,$\ell_1$と$\ell_2$は垂直に交わるとする.ただし,$\ell_2$は座標軸とは一致しない.$\ell_1$の傾きを$k$で表す.このとき,次の問に答えよ.

(1)$\ell_1$と$\ell_2$の交点Dは円$C$の内部にあることを示せ.
(2)弦ABの長さを$k$を用いて表せ.
(3)弦PQの長さを$k$を用いて表せ.
(4)四角形APBQの面積の最大値を求めよ.
新潟大学 国立 新潟大学 2011年 第2問
数直線上の動点Aがはじめ原点にある.動点Aは1秒ごとに数直線上を正の向きまたは負の向きにそれぞれ$\displaystyle \frac{1}{2}$の確率で指定された長さを移動するものとする.$n$秒後に動点Aが原点に戻る確率を$p_n$とする.ただし,$n$は自然数とする.このとき,次の問いに答えよ.

(1)動点Aが1秒ごとに正の向きに1または負の向きに1移動するとき,$p_1,\ p_2,\ p_3,\ p_4$を求めよ.
(2)動点Aが1秒ごとに正の向きに2または負の向きに1移動するとき,$p_6$を求めよ.
和歌山大学 国立 和歌山大学 2011年 第4問
放物線$\displaystyle C:y=\frac{1}{2}x^2$上に2点P$(2p,\ 2p^2)$,Q$(2q,\ 2q^2)$がある.ただし,$p<q$である.点Pにおける接線と点Qにおける接線の交点をA$(\alpha,\ \beta)$とする.また,放物線$C$と2直線PA,QAで囲まれる部分の面積を$S$とする.このとき,次の問いに答えよ.

(1)$\alpha,\ \beta$を$p,\ q$を用いて表せ.
(2)$S$を$p,\ q$を用いて表せ.
(3)$S=9$かつ$\text{PA} \perp \text{QA}$のとき,$\alpha,\ \beta$の値を求めよ.
山形大学 国立 山形大学 2011年 第3問
正の定数$k$に対し,曲線$y=kx^2$を$C$とする.この曲線$C$を用いて,数列$\{a_n\}$を次のように定める.

\mon[(1)] $a_1>0$
\mon[(ii)] $n=1,\ 2,\ 3,\ \cdots$に対し,点P$_n (a_n,\ k(a_n)^2)$における曲線$C$の接線と$x$軸との交点の$x$座標を$a_{n+1}$とする.

このとき,次の問に答えよ.

(1)曲線$C$上の点P$_1$における接線の方程式を求めよ.
(2)$a_2$を$a_1$で表せ.
(3)$a_n$を$a_1$で表せ.
(4)曲線$C$,$x$軸,直線$x=a_n$,$x=a_{n+1}$で囲まれた図形の面積を$S_n$とする.$S_n$を$a_1$で表せ.
(5)$T_n=S_1+S_3+\cdots +S_{2n-1}$とする.$T_{n}$を$a_1$で表せ.
(6)$U_n=S_2+S_4+\cdots +S_{2n}$とする.$\displaystyle \frac{U_n}{T_n}$を求めよ.
福井大学 国立 福井大学 2011年 第2問
Oを原点とする座標平面上に2点A$(4,\ 2)$,B$(5,\ 0)$がある.AをP$_0$とし,P$_0$から直線OBに下ろした垂線と直線OBとの交点をP$_1$,P$_1$から直線OAに下ろした垂線と直線OAとの交点をP$_2$とする.同様にして,自然数$n$に対して,P$_{2n}$から直線OBに下ろした垂線と直線OBとの交点をP$_{2n+1}$,P$_{2n+1}$から直線OAに下ろした垂線と直線OAとの交点をP$_{2n+2}$とする.さらに,自然数$n$に対して,線分P$_{n-1}$P$_n$の長さを$l_n$とするとき,以下の問いに答えよ.

(1)$l_n$を$n$の式で表せ.
(2)$l_1+l_2+\cdots +l_n> \text{OA}+\text{OB}$となる最小の$n$の値を求めよ.ただし,$\log_{10}2=0.3010$とする.
(3)線分P$_{2n-1}$P$_{2n}$の中点をM$_n$とするとき,点M$_1$,M$_2$,M$_3$,$\cdots$,M$_n$,$\cdots$は一直線上にあることを示し,その直線の方程式を求めよ.
山形大学 国立 山形大学 2011年 第4問
$xy$平面上に曲線$\displaystyle y=\frac{1}{x} \ (x>0)$がある.曲線$C$上の点P$\displaystyle \left( t,\ \frac{1}{t} \right)$における接線を$\ell$とし,原点Oから$\ell$に下ろした垂線をOHとするとき,次の問いに答えよ.

(1)直線$\ell$の方程式は$\displaystyle y=-\frac{1}{t^2}x+\frac{2}{t}$であることを示せ.
(2)点Hの座標は$\displaystyle \left( \frac{2t}{1+t^4},\ \frac{2t^3}{1+t^4} \right)$であることを示せ.
(3)直線$\ell$と$y$軸のなす角を$\displaystyle \theta \ \left( 0<\theta<\frac{\pi}{2} \right)$とし,線分OHの長さを$d$とする.

\mon[(i)] $t^2,\ d^2$を$\theta$の式で表せ.
\mon[(ii)] $\displaystyle \lim_{\theta \to +0}\frac{d^2}{\theta}$を求めよ.
和歌山大学 国立 和歌山大学 2011年 第4問
$f(x)=2x^2-15x+16+11 \log x$とする.このとき,次の問いに答えよ.ただし,対数は自然対数であり,その底は$e=2.718 \cdots$である.

(1)$x \geqq 1$のとき,$f(x)>0$であることを示せ.
(2)曲線$y=f(x)$と$x$軸および2直線$x=2,\ x=3$で囲まれる部分の面積を求めよ.
(3)$\displaystyle \log \frac{27}{4}>1.8$であることを示せ.
奈良教育大学 国立 奈良教育大学 2011年 第4問
$e$を自然対数の底とする.関数$f(x)$を$f(x)=\log (e-x) \ (x<e)$とする.このとき,以下の設問に答えよ.

(1)曲線$y=f(x)$と$x$軸との交点を求めよ.
(2)曲線$y=f(x)$と$y$軸との交点をPとする.点Pにおける曲線$y=f(x)$の接線を$\ell$とする.直線$\ell$の方程式を求めよ.
(3)曲線$y=f(x)$と直線$\ell$のグラフを描け.
(4)曲線$y=f(x)$と直線$\ell$および$x$軸によって囲まれた図形を$y$軸のまわりに1回転してできる立体の体積を求めよ.
宮崎大学 国立 宮崎大学 2011年 第3問
関数$f(x)$を
\[ f(x)=\left\{
\begin{array}{l}
-x^2+4x \quad (x \leqq 0,\ x \geqq 2 \text{のとき}) \\
x^2 \qquad\qquad\;\! (0<x<2 \text{のとき})
\end{array}
\right. \]
とする.座標平面上の曲線$C:y=f(x)$と直線$\ell:y=x$で囲まれる部分の面積を$S$とする.このとき,次の各問に答えよ.

(1)曲線$C$の概形をかけ.
(2)$S$の値を求めよ.
宮崎大学 国立 宮崎大学 2011年 第2問
座標平面上において,点A$(0,\ 1)$を中心とし原点Oを通る円$C_1$について,点B$(0,\ -1)$から引いた2本の接線の接点をP,Qとする.ただし,点Pの$x$座標は正とする.さらに,$y$軸に関して対称な放物線$C_2$が直線BPと直線BQにそれぞれ点Pと点Qで接するものとする.このとき,次の各問に答えよ.

(1)2点P,Qの座標を求めよ.
(2)放物線$C_2$を表す方程式を求めよ.
(3)点Aから放物線$C_2$上の各点までの距離は1以上であることを示せ.
(4)円$C_1$の原点Oを含む弧PQと放物線$C_2$で囲まれる部分の面積$S$を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。