タグ「直線」の検索結果

192ページ目:全2462問中1911問~1920問を表示)
島根大学 国立 島根大学 2011年 第3問
次の問いに答えよ.

(1)関数$y=|x|\sin x$の$x=0$における微分可能性を調べよ.
(2)不定積分$\displaystyle \int x\sin 2x \, dx$を求めよ.
(3)$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$の範囲で,曲線$C:y=|x|\sin x$を考える.$C$と直線$y=x$で囲まれる図形を$x$軸のまわりに回転してできる立体の体積を求めよ.
富山大学 国立 富山大学 2011年 第1問
次の問いに答えよ.

(1)すべての実数$x$について$x^2+k>|x|$が成立するような,定数$k$の範囲を求めよ.
(2)放物線$C_1:y=x^2+k$を考える.ただし,定数$k$は(1)の範囲にあるとする.直線$y=x$に関して$C_1$と対称な曲線を$C_2$とする.$C_1$上に点P$_1$を,$C_2$上に点P$_2$をとる.点P$_1$の$x$座標を$s$,点P$_2$の$y$座標を$t$とする.また原点をO$(0,\ 0)$とする.

(3)$\triangle$OP$_1$P$_2$の面積を$A$とおく.$A$を$s$と$t$を用いて表せ.ただし,3点O$(0,\ 0)$,L$(a,\ b)$,M$(c,\ d)$が同一直線上にないとき,その3点を頂点とする$\triangle$OLMの面積が$\displaystyle \frac{1}{2}|ad-bc|$であることは使ってよい.
(4)$t$を固定する.$s$が実数全体を動くときの$A$の最小値を$B$とする.$B$を$t$を用いて表せ.
(5)$t$が実数全体を動くときの$B$の最小値を求めよ.
香川大学 国立 香川大学 2011年 第1問
放物線$C_1:y=x^2$と定点$\mathrm{P}(a,\ b)$(ただし,$a^2<b$)を通る放物線$C_2:y=-3x^2+2px+q$の交点を$\mathrm{A}$,$\mathrm{B}$とする.点$\mathrm{A}$,$\mathrm{B}$の$x$座標をそれぞれ$\alpha,\ \beta \ (\text{ただし,} \ \alpha < \beta)$とする.$2$つの放物線$C_1,\ C_2$で囲まれた図形の面積を$S$とするとき,次の問に答えよ.

(1)$S$を$a,\ b,\ p$を用いて表せ.
(2)$S$を最小にする$p$とその最小値を$a,\ b$を用いて表せ.
(3)$\mathrm{M}$を線分$\mathrm{AB}$の中点とする.(2)のとき,線分$\mathrm{PM}$の長さを$a,\ b$を用いて表せ.
(4)(2)のとき,点$\mathrm{P}$における放物線$C_2$の接線$\ell$と直線$\mathrm{AB}$は平行であることを示せ.
鳥取大学 国立 鳥取大学 2011年 第3問
曲線$C:y=\log x \ (x>0)$について,次の問いに答えよ.ただし,$\log x$は$x$の自然対数である.

(1)不定積分$\displaystyle \int \log x \, dx$を求めよ.
(2)原点から曲線$C$に引いた接線$\ell$の方程式および接点の座標を求めよ.
(3)曲線$C$と(2)で求めた接線$\ell$および$x$軸とで囲まれた部分の面積を求めよ.
(4)曲線$C$と(2)で求めた接線$\ell$および$x$軸とで囲まれた部分を$x$軸の周りに1回転してできる立体の体積を求めよ.
滋賀大学 国立 滋賀大学 2011年 第4問
$a$を定数とする.空間内の4点A$(1,\ 0,\ 3)$,B$(0,\ 4,\ -2)$,C$(4,\ -3,\ 0)$,D$(-7+5a,\ 14-8a,\ z)$が同じ平面上にあるとき,次の問いに答えよ.

(1)$z$を$a$を用いて表せ.
(2)$a$の値を変化させたとき,点Dは直線AB上の点Pおよび直線AC上の点Qを通る.P,Qの座標を求めよ.
(3)$\triangle$ABCの面積を$S_1$,$\triangle$APQの面積を$S_2$とするとき,$\displaystyle \frac{S_2}{S_1}$の値を求めよ.
三重大学 国立 三重大学 2011年 第2問
四面体OABCにおいて$\text{OA}=\text{OC}=\sqrt{2},\ \text{OB}=\sqrt{5},\ \text{AB}=3$であり,$\displaystyle \angle \text{AOC}=\angle \text{BOC}=\frac{\pi}{2}$であるとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$として以下の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b},\ \overrightarrow{a} \cdot \overrightarrow{c},\ \overrightarrow{b} \cdot \overrightarrow{c}$を求めよ.
(2)線分ABを$1:2$に内分する点をDとし,点Oから直線CDに引いた垂線と直線CDの交点をHとするとき,$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.また$|\overrightarrow{\mathrm{OH}}|$を求めよ.
三重大学 国立 三重大学 2011年 第2問
座標平面において直線$\ell:y=ax+b$と直線$m:y=2x$を考える.

(1)2点$(0,\ 0)$,$(2,\ 0)$から直線$\ell$までの距離が一致するための$a,\ b$についての必要十分条件を求めよ.
(2)(1)の条件のもとで2直線$\ell,\ m$のなす角が$\displaystyle \frac{\pi}{4}$であるとき$a,\ b$の値を求めよ.ただし2直線のなす角$\theta$は常に$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲で考えるものとする.
三重大学 国立 三重大学 2011年 第2問
座標平面において直線$\ell:y=ax+b$と直線$m:y=2x$を考える.

(1)2点$(0,\ 0)$,$(2,\ 0)$から直線$\ell$までの距離が一致するための$a,\ b$についての必要十分条件を求めよ.
(2)(1)の条件のもとで2直線$\ell,\ m$のなす角が$\displaystyle \frac{\pi}{4}$であるとき$a,\ b$の値を求めよ.ただし2直線のなす角$\theta$は常に$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲で考えるものとする.
三重大学 国立 三重大学 2011年 第3問
四面体OABCにおいて$\text{OA}=\text{OC}=\sqrt{2},\ \text{OB}=\sqrt{5},\ \text{AB}=3$であり,$\displaystyle \angle \text{AOC}=\angle \text{BOC}=\frac{\pi}{2}$であるとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$として以下の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b},\ \overrightarrow{a} \cdot \overrightarrow{c},\ \overrightarrow{b} \cdot \overrightarrow{c}$を求めよ.
(2)線分ABを$1:2$に内分する点をDとし,点Oから直線CDに引いた垂線と直線CDの交点をHとするとき,$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.また$|\overrightarrow{\mathrm{OH}}|$を求めよ.
三重大学 国立 三重大学 2011年 第3問
四面体OABCにおいて$\text{OA}=\text{OC}=\sqrt{2},\ \text{OB}=\sqrt{5},\ \text{AB}=3$であり,$\displaystyle \angle \text{AOC}=\angle \text{BOC}=\frac{\pi}{2}$であるとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$として以下の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b},\ \overrightarrow{a} \cdot \overrightarrow{c},\ \overrightarrow{b} \cdot \overrightarrow{c}$を求めよ.
(2)線分ABを$1:2$に内分する点をDとし,点Oから直線CDに引いた垂線と直線CDの交点をHとするとき,$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.また$|\overrightarrow{\mathrm{OH}}|$を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。