タグ「直線」の検索結果

191ページ目:全2462問中1901問~1910問を表示)
徳島大学 国立 徳島大学 2011年 第3問
曲線$C$を$y^2-4y-8x+20=0$とする.

(1)曲線$y^2=8x$を$x$軸方向に$a$,$y$軸方向に$b$だけ平行移動して曲線$C$が得られるように,$a,\ b$の値を定めよ.
(2)点$(0,\ t)$を通り,傾きが$\displaystyle \frac{1}{m}$の直線を$\ell$とする.直線$\ell$と曲線$C$が接するとき,$m$の満たす2次方程式を求めよ.
(3)点$(0,\ t)$から曲線$C$に引いた2本の接線は,$t$の値によらず垂直であることを示せ.
奈良女子大学 国立 奈良女子大学 2011年 第6問
直線$\ell:y=x$上を動く点Pと,Pで$\ell$と接する円$C_1$を考える.Pの座標を$(t,\ t)$,$C_1$の中心の座標を$(a,\ b)$とする.ただし$t>0,\ a>b$とする.以下の問いに答えよ.

(1)以下の(i),(ii)に答えよ.

\mon[(i)] $a+b$を$t$を用いて表せ.
\mon[(ii)] $C_1$の半径を$a,\ b$を用いて表せ.

(2)中心が$(1,\ -1)$の円$C_2$も$\ell$と接しているとする.$C_1$が,さらに$C_2$に接しているとする.以下の(i),(ii)に答えよ.

\mon[(i)] $(a+b)^2=8(a-b)$を示せ.
\mon[(ii)] $b$の最大値を求めよ.
島根大学 国立 島根大学 2011年 第1問
$p,\ q$を定数とし,$p$は$0$でないとする.$2$つの放物線$y=4x^2+3px+5q$と$y=3x^2+2px+4q$が,異なる$2$点$\mathrm{M}$,$\mathrm{N}$で交わっているとき,次の問いに答えよ.

(1)直線$\mathrm{MN}$の傾きを$p$を用いて表せ.
(2)$\mathrm{OM}=\mathrm{ON}$となるとき,$q$を$p$の式で表せ.ただし,$\mathrm{O}$は座標平面の原点を表す.
岩手大学 国立 岩手大学 2011年 第5問
2つの曲線
\[ C_1:y=2x^2,\quad C_2:y=-\frac{1}{4}x^2 \]
と2つの直線
\[ \ell_1:y=ax+t-1,\quad \ell_2:y=bx+t \]
があり,$\ell_1$は$C_1$に接し,$\ell_2$は$C_2$に接している.ただし,$a,\ b,\ t$は定数で,$a>0,\ b>0,\ 0<t<1$を満たすものとする.このとき,次の問いに答えよ.

(1)$a$および$b$をそれぞれ$t$で表せ.
(2)$C_1,\ \ell_1$および$y$軸で囲まれた図形の面積$S_1$と,$C_2,\ \ell_2$および$y$軸で囲まれた図形の面積$S_2$が等しくなるときの$t$の値を求めよ.
富山大学 国立 富山大学 2011年 第1問
放物線$C:y=x^2-4x+3$と直線$\ell:y=mx-m$を考える.このとき,次の問いに答えよ.

(1)放物線$C$と直線$\ell$が接するときの$m$の値$m_0$を求めよ.
(2)$m>m_0$とする.放物線$C$と直線$\ell$および$y$軸で囲まれた図形の面積を$S_1$とし,放物線$C$と直線$\ell$で囲まれた図形の面積を$S_2$とする.$S_1$と$S_2$をそれぞれ$m$を用いて表せ.
(3)$m>m_0$における$S_2-2S_1$の最小値,およびそのときの$m$の値を求めよ.
鳥取大学 国立 鳥取大学 2011年 第2問
$xy$平面上の円$C_1:x^2+y^2+ax+by+28=0$は,点A$(2,\ 8)$と点B$(7,\ 7)$を通る.このとき,次の問いに答えよ.

(1)円$C_1$の中心の座標と半径を求めよ.
(2)円$C_1$上の点A,Bにおける接線をそれぞれ$\ell,\ m$とするとき,2直線$\ell,\ m$の交点の座標を求めよ.
(3)$x$の2次関数のグラフ$C_2$は(2)で求めた交点を頂点とし,点Aを通る.このとき$C_2$と$x$軸との交点の座標を求めよ.
岩手大学 国立 岩手大学 2011年 第5問
2つの曲線
\[ C_1:y=2x^2,\quad C_2:y=-\frac{1}{4}x^2 \]
と2つの直線
\[ \ell_1:y=ax+t-1,\quad \ell_2:y=bx+t \]
があり,$\ell_1$は$C_1$に接し,$\ell_2$は$C_2$に接している.ただし,$a,\ b,\ t$は定数で,$a>0,\ b>0,\ 0<t<1$を満たすものとする.このとき,次の問いに答えよ.

(1)$a$および$b$をそれぞれ$t$で表せ.
(2)$C_1,\ \ell_1$および$y$軸で囲まれた図形の面積$S_1$と,$C_2,\ \ell_2$および$y$軸で囲まれた図形の面積$S_2$が等しくなるときの$t$の値を求めよ.
岩手大学 国立 岩手大学 2011年 第6問
$x>0$で定義された関数$\displaystyle f(x)=\frac{(\log x)^2}{\sqrt{x}}$について,次の問いに答えよ.

(1)$y=f(x)$の増減を調べ,極値を求めよ.
(2)曲線$y=f(x)$と2直線$x=e$,$x=e^2$および$x$軸で囲まれた図形を$x$軸のまわりに1回転して得られる立体の体積を求めよ.
島根大学 国立 島根大学 2011年 第3問
次の問いに答えよ.

(1)関数$y=|x|\sin x$の$x=0$における微分可能性を調べよ.
(2)不定積分$\displaystyle \int x\sin 2x \, dx$を求めよ.
(3)$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$の範囲で,曲線$C:y=|x|\sin x$を考える.$C$と直線$y=x$で囲まれる図形を$x$軸のまわりに回転してできる立体の体積を求めよ.
島根大学 国立 島根大学 2011年 第1問
平面上に一辺の長さが1の正三角形OABと,辺AB上の点Cがあり,$\text{AC}<\text{BC}$とする.点Aを通り直線ABに直交する直線$k$と,直線OCとの交点をDとする.$\triangle$OCAと$\triangle$ACDの面積比が$1:2$であるとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OD}}=m\overrightarrow{\mathrm{OA}}+n\overrightarrow{\mathrm{OB}}$となる$m,\ n$を求めよ.
(2)点Dを通り,直線ODと直交する直線を$\ell$とする.$\ell$と直線OA,OBとの交点をそれぞれE,Fとするとき,$\overrightarrow{\mathrm{EF}}=s\overrightarrow{\mathrm{OA}}+t\overrightarrow{\mathrm{OB}}$となる$s,\ t$を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。