タグ「直線」の検索結果

188ページ目:全2462問中1871問~1880問を表示)
埼玉大学 国立 埼玉大学 2011年 第3問
$a$を1より大きい定数とする.$xy$平面上の点$(a \cos t,\ \sqrt{a^2-1} \sin t)$と直線$x+y = \sqrt{3}a$の距離を$f(t)$とおく.$t$が$0 \leqq t \leqq 2\pi$の範囲を動くときの$f(t)$の最小値を$m$とする.

(1)$m$を$a$の関数として表せ.
(2)(1)で求めた$a$の関数$m$の最小値を求めよ.
埼玉大学 国立 埼玉大学 2011年 第3問
$a$を$1$より大きい定数とする.$xy$平面上の点$(a \cos t,\ \sqrt{a^2-1} \sin t)$と直線$x+y = \sqrt{3}a$の距離を$f(t)$とおく.$t$が$0 \leqq t \leqq 2\pi$の範囲を動くときの$f(t)$の最小値を$m$とする.

(1)$m$を$a$の関数として表せ.
(2)(1)で求めた$a$の関数$m$の最小値を求めよ.
広島大学 国立 広島大学 2011年 第4問
平面上で,線分ABを$1:2$に内分する点をOとし,Oを中心とする半径OBの円を$S$,円$S$と直線ABとの交点のうち点Bと異なる方をCとする.点Pは円$S$の内部にあり,線分BC上にないものとする.円$S$と直線PBとの交点のうち点Bと異なる方をQとする.$\overrightarrow{\mathrm{PA}} =\overrightarrow{a},\ \overrightarrow{\mathrm{PB}} =\overrightarrow{b},\ \angle \text{APB} = \theta$とおくとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{PO}},\ \overrightarrow{\mathrm{PC}},\ \overrightarrow{\mathrm{OB}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(2)点Pが円$S$の内部にあることを用いて,$\displaystyle \cos \theta < \frac{|\overrightarrow{b}|}{4|\overrightarrow{a}|}$を証明せよ.
(3)PQの長さを$|\overrightarrow{a}|,\ |\overrightarrow{b}|,\ \theta$で表せ.
(4)$\text{PA}=3,\ \text{PB}=2$とする.$\triangle \text{QAB} = 3 \triangle \text{POB}$を満たすとき,$\triangle$PABの面積を求めよ.
広島大学 国立 広島大学 2011年 第3問
放物線$\displaystyle F:y=\frac{1}{2}(x+1)^2$上の点A$\displaystyle \left( 0,\ \frac{1}{2} \right)$を通り,Aにおける$F$の接線に垂直な直線を$\ell$とし,$\ell$と放物線$F$との交点のうち点Aと異なる方をB$\displaystyle \left( b,\ \frac{1}{2}(b+1)^2 \right)$とする.次の問いに答えよ.

(1)直線$\ell$の方程式と$b$の値を求めよ.
(2)放物線$F$と直線$\ell$で囲まれた部分の面積$T_1$を求めよ.
(3)線分ABを直径とする円を$C$とする.このとき,不等式$\displaystyle y \leqq \frac{1}{2}(x+1)^2$の表す領域で円$C$の内部にある部分の面積$T_2$を求めよ.
広島大学 国立 広島大学 2011年 第4問
平面上で,線分ABを$1:2$に内分する点をO,線分ABを$1:4$に外分する点をCとする.Pを直線AB上にない点とし,$\overrightarrow{\mathrm{PO}}$と$\overrightarrow{\mathrm{PC}}$が垂直であるとする.$\overrightarrow{\mathrm{PA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{PB}}=\overrightarrow{b}$とおくとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{PO}},\ \overrightarrow{\mathrm{PC}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(2)$\overrightarrow{a}$と$\overrightarrow{b}$の内積$\overrightarrow{a} \cdot \overrightarrow{b}$を$|\overrightarrow{a}|,\ |\overrightarrow{b}|$で表せ.
(3)$\text{PA}=1,\ \triangle \text{PAB}$の面積が$\displaystyle \frac{3}{2}$のとき,PBの長さを求めよ.
九州大学 国立 九州大学 2011年 第1問
放物線$y = x^2$上の点$\mathrm{P}(t,\ t^2)$から直線$y=x$へ垂線を引き,交点を$\mathrm{H}$とする.ただし,$t>1$とする.このとき,以下の問いに答えよ.

(1)$\mathrm{H}$の座標を$t$を用いて表せ.
(2)$\mathrm{P}$を通り$y$軸に平行な直線と直線$y=x$との交点を$\mathrm{R}$とするとき,三角形$\mathrm{PRH}$の面積を$t$を用いて表せ.
(3)$x \geqq 1$の範囲において,放物線$y = x^2$と直線$y = x$および線分$\mathrm{PH}$とで囲まれた図形の面積を$S_1$とするとき,$S_1$を$t$を用いて表せ.
(4)放物線$y=x^2$と直線$y=x$で囲まれた図形の面積を$S_2$とする.$S_1=S_2$であるとき,$t$の値を求めよ.
岩手大学 国立 岩手大学 2011年 第1問
$x$の関数
\[ f(x) = \int_{-2}^x (3t^2-6t-9) \, dt \]
について,以下の問いに答えよ.

(1)積分を計算し,$f(x)$を求めよ.
(2)$f(-2)$の値を求めよ.
(3)方程式$f(x) = 0$の解をすべて求めよ.
(4)関数$f(x)$の極大値および極小値を求めよ.
(5)座標平面上の2点$(0,\ f(0)),\ (3,\ f(3))$を通る直線の方程式を求めよ.
(6)$y = f(x)$のグラフの接線のうち,(5)で求めた直線と傾きが等しいものをすべて求めよ.
弘前大学 国立 弘前大学 2011年 第3問
曲線$y = x^3 +4x^2 -x$と曲線$y = x^2 +3$の3つの交点を$(x_1,\ y_1),\ (x_2,\ y_2),\ (x_3,\ y_3)$とおく.ただし$x_1 < x_2 < x_3$とする.次の問いに答えよ.

(1)2点$(x_1,\ y_1)$と$(x_3,\ y_3)$を結ぶ直線を$L$とする.このとき,直線$L$と曲線$y = x^2+3$で囲まれた部分$D$の面積を求めよ.
(2)曲線$y = x^2 +3$上の2点$(x_1,\ y_1),\ (x_3,\ y_3)$におけるこの曲線の接線をそれぞれ$L_1,\ L_2$とする.2直線$L_1$と$L_2$の交点を通り$y$軸に平行な直線を$L_0$とする.このとき,直線$L_0$は,(1)で求めた部分$D$の面積を二等分することを示せ.
金沢大学 国立 金沢大学 2011年 第2問
実数$x$に対して,関数$f(x)$を
\[ f(x)=\int_0^2 |t-x| \, dt \]
とおく.次の問いに答えよ.

(1)関数$y=f(x)$を求め,そのグラフをかけ.
(2)$y=f(x)$の接線で傾きが1のものを$\ell$とする.$\ell$の方程式を求めよ.
(3)直線$x=-1$,接線$\ell$,曲線$y=f(x)$で囲まれた図形の面積を求めよ.
金沢大学 国立 金沢大学 2011年 第3問
座標平面上に$\mathrm{A}(p,\ q)$,$\mathrm{B}(-q,\ p)$,$\mathrm{C}(-p,\ -q)$,$\mathrm{D}(q,\ -p)$を頂点とする正方形がある.ただし,$p>0,\ q>0,\ p^2+q^2=1$とする.また,直線$\mathrm{AB}$,$\mathrm{AD}$が直線$x+y=1$と交わる点をそれぞれ$\mathrm{E}(r,\ s)$,$\mathrm{F}(t,\ u)$とする.次の問いに答えよ.

(1)直線$\mathrm{AB}$,$\mathrm{AD}$の方程式を$p,\ q$を用いて表せ.
(2)$r,\ s,\ t,\ u$を$p,\ q$を用いて表せ.
(3)$k= p+ q$とおくとき,$pq$を$k$の式で表せ.また,$k \leqq \sqrt{2}$を示せ.
(4)$st- ru$を$k$の式で表せ.また,$st -ru$の最小値を求めよ.
(図は省略)
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。