タグ「直線」の検索結果

176ページ目:全2462問中1751問~1760問を表示)
東北工業大学 私立 東北工業大学 2012年 第5問
$f(x)=x^2-ax+36$とする.ただし,$a>0$とする.

(1)$a=[][]$のとき,$x$が$0$から$2$まで変化する場合の$f(x)$の平均変化率が$-16$となる.また,このとき$f^\prime(u)=0$を満たす値$u$に対して$f(u)=-[][]$となる.
(2)$a=[][]$のとき,$\displaystyle \int_0^3 f(x) \, dx=0$となる.
(3)$a=[][]$のとき,$\displaystyle \int_0^a f(x) \, dx=12a$となる.
(4)$y=f(x)$のグラフに対し,原点を通り,$x>0$の領域でこのグラフに接する接線$\ell$を引く.$a=[][]$のとき,$\ell$とこのグラフとの接点の$y$座標が$12$となる.
北海道薬科大学 私立 北海道薬科大学 2012年 第3問
円$C:x^2+y^2-6x-4y+8=0$と直線$\ell:y=mx-2m-1$($m$は実数)がある.

(1)円$C$の中心$\mathrm{C}$の座標は$([ア],\ [イ])$,半径は$\sqrt{[ウ]}$である.
(2)$\ell$は$m$の値にかかわらず点$\mathrm{A}$を通る.その座標は$([エ],\ [オカ])$である.
(3)$\ell$が$C$と接するのは
\[ m=[キク] \qquad \cdots\cdots① \]

\[ m=\frac{[ケ]}{[コ]} \qquad \cdots\cdots② \]
のときである.
$①$のときの接点を$\mathrm{B}$,$②$のときの接点を$\mathrm{D}$とすると,四角形$\mathrm{ABCD}$から中心角が$\angle \mathrm{BCD}$の扇形を除いた図形の面積は
\[ [サ]-\frac{[シ]}{[ス]} \pi \]
となる.ただし,$0^\circ< \angle \mathrm{BCD}<180^\circ$とする.
成城大学 私立 成城大学 2012年 第3問
座標空間において,$2$点$\mathrm{A}(\sqrt{6},\ 2,\ -\sqrt{6})$,$\mathrm{B}(-\sqrt{2},\ 2 \sqrt{3},\ \sqrt{2})$がある.原点を$\mathrm{O}$とするとき,以下の問いに答えよ.

(1)$2$つのベクトル$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$の両方に垂直である単位ベクトル$\overrightarrow{p}$をすべて求めよ.
(2)平面$z=1$と直線$\mathrm{OA}$および直線$\mathrm{OB}$との交点を,それぞれ$\mathrm{A}^\prime$,$\mathrm{B}^\prime$とする.このとき線分$\mathrm{A}^\prime \mathrm{B}^\prime$の長さを求めよ.
津田塾大学 私立 津田塾大学 2012年 第2問
空間内の$4$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 0,\ 1)$,$\mathrm{C}(1,\ 1,\ 2)$を考える.点$\mathrm{P}$が直線$\mathrm{OA}$上を動き,点$\mathrm{Q}$が直線$\mathrm{BC}$上を動くとする.

(1)$\displaystyle \mathrm{PQ} \geqq \frac{\sqrt{2}}{2}$であることを示せ.

(2)$\displaystyle \mathrm{PQ}=\frac{\sqrt{2}}{2}$となる点$\mathrm{P}$,$\mathrm{Q}$を求めよ.また,その$\mathrm{P}$,$\mathrm{Q}$に対して,直線$\mathrm{PQ}$は直線$\mathrm{OA}$および直線$\mathrm{BC}$に直交することを示せ.
津田塾大学 私立 津田塾大学 2012年 第3問
放物線$y=x^2$を$C$とおき,$C$上の点$\mathrm{A}(a,\ a^2)$(ただし$a>0$)と点$\mathrm{B}(0,\ 1)$を通る直線を$\ell$とする.$C$と$\ell$で囲まれた領域の$x \geqq 0$の部分の面積を$f(a)$とし,$C$と$x$軸と直線$x=a$で囲まれた領域の面積を$g(a)$とする.$f(a)-g(a)$の最大値を求めよ.
津田塾大学 私立 津田塾大学 2012年 第4問
曲線$\displaystyle y=\frac{1}{x^2}$の$x>0$の部分を$C_1$とする.また,原点と$C_1$上の点$\displaystyle \mathrm{P} \left( p,\ \frac{1}{p^2} \right)$を通る放物線を$C_2$とする.$C_1$と$C_2$が点$\mathrm{P}$において同一の直線に接するとき,次の問に答えよ.

(1)$C_2$の式を$p$を用いて表せ.
(2)$C_2$と$x$軸の交点のうち,原点でない方を$\mathrm{Q}$とおく.点$\mathrm{Q}$を通り$y$軸に平行な直線と,$C_1,\ C_2$で囲まれた領域の面積を求めよ.
北海学園大学 私立 北海学園大学 2012年 第3問
$\mathrm{AB}=k$,$\displaystyle \mathrm{CA}=\frac{5}{3}k$,$\displaystyle \cos A=\frac{1}{3}$である三角形$\mathrm{ABC}$において,頂点$\mathrm{A}$から直線$\mathrm{BC}$に下ろした垂線と直線$\mathrm{BC}$との交点を$\mathrm{H}$とする.ただし,$k$は定数で,$k>0$とする.

(1)辺$\mathrm{BC}$の長さを$k$を用いて表せ.
(2)線分$\mathrm{BH}$の長さを$k$を用いて表せ.
(3)線分$\mathrm{AH}$上に$\angle \mathrm{BDC}=90^\circ$となる点$\mathrm{D}$をとるとき,線分$\mathrm{BD}$の長さを$k$を用いて表せ.また,$\cos \angle \mathrm{BDA}$の値を求めよ.
北海学園大学 私立 北海学園大学 2012年 第4問
放物線$C:y=-x^2+ax$上の点$\mathrm{A}(a,\ 0)$を通り,傾きが$-1$の直線を$\ell$とする.ただし,$a$は定数で,$a>1$とする.

(1)$C$と$\ell$の共有点のうち,点$\mathrm{A}$とは異なる点の座標を$a$を用いて表せ.
(2)$C$と$\ell$で囲まれた図形の面積$S_1$を$a$を用いて表せ.また,曲線$C_1:y=-x^2+ax (0 \leqq x \leqq 1)$について,$C_1$,$\ell$および$y$軸によって囲まれた図形の面積$S_2$を$a$を用いて表せ.
(3)$S=S_1-S_2$とする.$S$の最小値とそのときの$a$の値を求めよ.
法政大学 私立 法政大学 2012年 第2問
直線$y=5x-9$を$\ell$とおく.また,$k$は実数の定数とする.

(1)放物線$y=x^2+ax-3$の頂点が$\ell$上にあるような実数$a$の値をすべて求めよ.
(2)放物線$y=x^2+ax+k$の頂点が$\ell$上にあるような実数$a$が少なくとも$1$つ存在するための$k$に関する条件を求めよ.
(3)実数の定数$a_1$と$a_2$に対し,放物線$y=x^2+a_1x+k$と$y=x^2+a_2x+k$の頂点がともに$\ell$上にあり,それら$2$頂点の間の距離が$13$であるとき,$k$の値を求めよ.
神戸薬科大学 私立 神戸薬科大学 2012年 第2問
以下の文中の$[ ]$の中にいれるべき数または式等を求めて記入せよ.

(1)平面上に$\triangle \mathrm{ABC}$と点$\mathrm{P}$があり,次の式を満たしている.
\[ 2 \overrightarrow{\mathrm{AP}}+3 \overrightarrow{\mathrm{BP}}+4 \overrightarrow{\mathrm{CP}}=\overrightarrow{\mathrm{0}} \]

(i) $\overrightarrow{\mathrm{AP}}=[ ] \overrightarrow{\mathrm{AB}}+[ ] \overrightarrow{\mathrm{AC}}$である.
(ii) $2$直線$\mathrm{AP}$,$\mathrm{BC}$の交点を$\mathrm{Q}$とする.点$\mathrm{Q}$は線分$\mathrm{BC}$を$[ ]$の比に内分する.また点$\mathrm{P}$は線分$\mathrm{AQ}$を$[ ]$の比に内分する.

(2)円に内接する四角形$\mathrm{ABCD}$において$\mathrm{AB}=1$,$\mathrm{AD}=2$,$\angle \mathrm{BCD}={60}^\circ$であるとき$\mathrm{BD}=[ ]$であり,外接円の半径$R=[ ]$である.また$\mathrm{CD}=3 \mathrm{BC}$のとき$\mathrm{BC}=[ ]$であり,四角形$\mathrm{ABCD}$の面積は$[ ]$である.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。