タグ「直線」の検索結果

174ページ目:全2462問中1731問~1740問を表示)
広島修道大学 私立 広島修道大学 2012年 第3問
円$x^2+y^2=9$を$C$とする.円$C$が直線$y=-x+k$と異なる$2$つの共有点$\mathrm{A}$,$\mathrm{B}$をもつとき,次の問に答えよ.

(1)$k=1$のとき,線分$\mathrm{AB}$の長さを求めよ.
(2)$\mathrm{AB}=4$となるような定数$k$の値を求めよ.
(3)$\mathrm{AB}=4$かつ$k>0$のとき,点$\mathrm{A}$における円$C$の接線と点$\mathrm{B}$における円$C$の接線の交点を$\mathrm{P}$とする.三角形$\mathrm{ABP}$の面積を求めよ.また,点$\mathrm{P}$の座標を求めよ.
広島修道大学 私立 広島修道大学 2012年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)連立不等式
\[ \left\{ \begin{array}{l}
\displaystyle \frac{1}{3}x-7 \leqq 2 \\ \\
\displaystyle \frac{3}{2}x+3>-\frac{3}{4}x+1
\end{array} \right. \]
の解は$[$1$]$である.
(2)$2$点$(5,\ 1)$,$(-2,\ 4)$を通る直線の方程式は$[$2$]$である.
(3)直線$y=ax-3$が放物線$y=x^2-4x+3a$の接線であるとき,定数$a$の値は$[$3$]$である.
(4)$\displaystyle \sqrt{3} \sin \frac{\pi}{4}-\sqrt{6} \cos \frac{\pi}{3}$の値は$[$4$]$,$\displaystyle \sin \frac{\pi}{9} \sin \frac{\pi}{18}-\cos \frac{\pi}{9} \cos \frac{\pi}{18}$の値は$[$5$]$である.
(5)赤玉が$4$つ,青玉が$3$つ,黄玉が$2$つある.これらすべての玉を$1$列に並べる並べ方は$[$6$]$通りである.これらの玉をすべて$1$つの袋に入れ,そのうち$3$つを同時に取り出すとき,異なる色の玉を取り出す確率は$[$7$]$であり,赤玉$2$つ,青玉$1$つを取り出す確率は$[$8$]$である.また,すべての玉が入った袋から玉を$4$つ同時に取り出すとき,青玉が少なくとも$1$つ含まれる確率は$[$9$]$である.
(6)$2$次関数$f(x)$は,$\displaystyle x=-\frac{3}{4}$で極値をとり,$f(-1)=-2$,$f^\prime(2)=11$を満たす.このとき,$f(x)=[$10$]$であり,$\displaystyle \int_{-1}^2 f(x) \, dx$の値は$[$11$]$である.
北海道医療大学 私立 北海道医療大学 2012年 第3問
関数$f(x)=|x^2-4|$と$y$軸上の点$\mathrm{C}(0,\ 8)$を通る傾きが$k$である直線$\ell$について,以下の問に答えよ.ただし,$k$は定数とする.

(1)直線$\ell$の方程式を$k$を用いて表せ.

(2)$\displaystyle S(a)=\int_{-a}^a f(x) \, dx$とするとき,$S(2)$と$S(3)$を求めよ.

(3)$k=0$であるとき,直線$\ell$と関数$f(x)$で囲まれる部分の面積を求めよ.
(4)$k=4$であるとき,直線$\ell$と関数$f(x)$で囲まれる部分の面積を求めよ.
(5)$k$が範囲$0<k<4$にあるときの直線$\ell$と関数$f(x)$で囲まれる部分の面積を$k$を用いて表せ.
東北医科薬科大学 私立 東北医科薬科大学 2012年 第1問
関数$y=1-x^2$,$y=4+3x-x^2$を考える.このとき,次の問に答えなさい.

(1)不等式$0 \leqq y \leqq 1-x^2$で表される領域の面積は$\displaystyle \frac{[ア]}{[イ]}$である.また,不等式
\[ y \geqq 1-x^2,\quad y \leqq 4+3x-x^2,\quad y \geqq 0 \]
で表される領域の面積は$\displaystyle \frac{[ウエ]}{[オ]}$である.
(2)曲線$y=1-x^2$上の点$\mathrm{P}(k,\ 1-k^2)$における接線を$\ell$とおく.このとき接線$\ell$が曲線$y=4+3x-x^2$と異なる$2$点で交わるような$k$の値の範囲は$\displaystyle \frac{[カキ]}{[ク]}<k$である.また,このとき交点の$x$座標の値を$\alpha$,$\beta$とおくと
\[ \alpha+\beta=[ケ]+[コ]k,\quad \alpha\beta=[サシ]+k^{[ス]} \]
である.
(3)接線$\ell$と曲線$y=4+3x-x^2$で囲まれる領域の面積が$\displaystyle \frac{125}{6}$となる$k$の値は$\displaystyle \frac{[セ]}{[ソ]}$である.
東北医科薬科大学 私立 東北医科薬科大学 2012年 第2問
$xy$平面に三角形$\mathrm{ABC}$があり,
\[ \angle \mathrm{ABC}=60^\circ,\quad \angle \mathrm{BAC}=105^\circ,\quad \mathrm{BC}=1+\sqrt{3} \]
であるという.このとき,次の問に答えなさい.

(1)$\mathrm{AB}=[アイ]+\sqrt{[ウ]}$,$\mathrm{AC}=\sqrt{[エ]}$である.

(2)三角形$\mathrm{ABC}$の面積は$\displaystyle \frac{\sqrt{[オ]}}{[カ]}$である.
(3)点$\mathrm{A}$を通り$xy$平面に垂直な直線上の点$\mathrm{D}$を$\mathrm{AD}=4$となるように$xy$平面の上方にとる.また,点$\mathrm{B}$を通り$xy$平面に垂直な直線上の点$\mathrm{E}$を$\mathrm{BE}=3$となるように$xy$平面の上方にとる.また,点$\mathrm{C}$を通り$xy$平面に垂直な直線上の点$\mathrm{F}$を$\angle \mathrm{DEF}=90^\circ$となるようにとる.このとき,$\mathrm{CF}=[キ]$で,三角形$\mathrm{DEF}$の面積を$S$とおくと$\displaystyle S^2=\frac{[クケ]}{[コ]}$である.
岡山理科大学 私立 岡山理科大学 2012年 第3問
原点$\mathrm{O}$を中心とする半径$2$の円に,点$\mathrm{P}(4,\ 0)$から引いた$2$つの接線の接点のうち,第$1$象限にある点を$\mathrm{A}$,残りの点を$\mathrm{B}$とする.直線$\mathrm{AB}$が$x$軸と交わる点を$\mathrm{C}$とする.$\mathrm{C}$から直線$\mathrm{AP}$に引いた垂線と$\mathrm{AP}$の交点を$\mathrm{D}$とする.このとき,次の設問に答えよ.

(1)線分$\mathrm{AP}$の長さを求めよ.
(2)線分$\mathrm{CD}$の長さを求めよ.
(3)$3$点$\mathrm{P}$,$\mathrm{C}$,$\mathrm{D}$を通る円の方程式を求めよ.
岡山理科大学 私立 岡山理科大学 2012年 第4問
$\triangle \mathrm{ABC}$の外心を$\mathrm{F}$,重心を$\mathrm{G}$とする.また,$\overrightarrow{\mathrm{FA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{FB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{FC}}=\overrightarrow{c}$とおき,$\mathrm{H}$を$\overrightarrow{\mathrm{FH}}=3 \overrightarrow{\mathrm{FG}}$を満たす点とする.このとき,次の設問に答えよ.

(1)$\overrightarrow{\mathrm{FH}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$で表せ.
(2)$\mathrm{AH} \perp \mathrm{BC}$を示せ.
(3)$\mathrm{M}$を辺$\mathrm{BC}$の中点とする.$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$が相異なる点で,$3$点$\mathrm{A}$,$\mathrm{G}$,$\mathrm{H}$が同一直線上にないとき,$\triangle \mathrm{AHG}$の面積は$\triangle \mathrm{MFG}$の面積の何倍であるかを求めよ.
青山学院大学 私立 青山学院大学 2012年 第4問
曲線$\displaystyle y=\frac{1}{x} (x>0)$を$C$とする.

(1)曲線$C$上の点$\mathrm{A}(1,\ 1)$を通り,傾き$-m (0<m<1)$の直線と曲線$C$の交点のうち,$\mathrm{A}$と異なる点を$\mathrm{B}$とする.点$\mathrm{B}$の座標,および線分$\mathrm{AB}$の長さ$l$を求めよ.
(2)直線$\mathrm{AB}$と曲線$C$によって囲まれた部分の面積$S$を求めよ.
(3)$m \to +0$のとき,$\displaystyle \frac{S}{l}$の極限値を求めよ.ただし,$\displaystyle \lim_{x \to +0}x \log x=0$であることを用いてよい.
日本福祉大学 私立 日本福祉大学 2012年 第2問
$2$直線$x+y-3=0$,$3x-y+7=0$の交点と直線$4x-3y+6=0$との距離を求めよ.
広島工業大学 私立 広島工業大学 2012年 第5問
次の各問いに答えよ.

(1)不等式$ax+3>2x$を解け.ただし,$a$は定数とする.

(2)$\displaystyle a=\frac{2}{\sqrt{3}+1},\ b=\frac{2}{\sqrt{3}-1}$とするとき,$\displaystyle \frac{b^2}{a}+\frac{a^2}{b}$の値を求めよ.

(3)$2$本の平行な直線上にそれぞれ$3$個と$4$個の点がある.この中の$3$点を選んでできる三角形の個数を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。