タグ「直線」の検索結果

171ページ目:全2462問中1701問~1710問を表示)
龍谷大学 私立 龍谷大学 2012年 第3問
電車が直線の線路を一定の速度で走っている.ある時刻に前方の右手に高さ$634 \mathrm{m}$の塔が見えた.そのとき塔の先端を見上げる角が$30^\circ$であった.その$1$分後に電車が塔に最も近づき,見上げる角は$45^\circ$になった.この電車は時速何$\mathrm{km}$で走っていますか.小数第$1$位を四捨五入して,整数で求めなさい.

ただし,線路は水平面上にしかれており,塔はその水平面上にたっているとする.また,見上げる角は,電車の高さおよび目までの高さを無視してこの水平面となす角とする.
龍谷大学 私立 龍谷大学 2012年 第4問
$0 \leqq x \leqq 2\pi$の範囲で関数
\[ f(x)=x+1-\cos x+\sqrt{3} \sin x \]
を考える.

(1)$f(x)$の極値を求め,$y=f(x)$のグラフを描きなさい.
(2)曲線$y=f(x)$,$x$軸,直線$x=2\pi$で囲まれた部分の面積を求めなさい.
学習院大学 私立 学習院大学 2012年 第4問
$p,\ a,\ b$を実数,ただし$p>0$,$a>0$とする.直線$L:y=px$と直線$L^\prime$が原点で直交している.放物線$C:y=ax^2+bx+1$は$L$と$L^\prime$に同時に接している.

(1)$a$と$b$を,$p$を用いて表せ.
(2)$p=2$のとき,$L$と$L^\prime$と$C$で囲まれた部分の面積を求めよ.
学習院大学 私立 学習院大学 2012年 第4問
$t>0$とし,放物線$\displaystyle C_1:y=-\frac{1}{16}x^2-\frac{8}{9}$上の点$\displaystyle \mathrm{P} \left( t,\ -\frac{1}{16}t^2-\frac{8}{9} \right)$における法線を$L$とする.ただし,点$\mathrm{P}$における法線とは,点$\mathrm{P}$を通り,点$\mathrm{P}$における$C_1$の接線と直交する直線のことである.

(1)$L$が放物線$C_2:y=x^2$に接するとき,$t$の値を求めよ.
(2)$t$が$(1)$での値をとるとき,$C_1,\ C_2,\ L$および$y$軸で囲まれた部分の面積を求めよ.
西南学院大学 私立 西南学院大学 2012年 第5問
同一直線上にない$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$がある.$\mathrm{O}$を原点として,以下の問に答えよ.

(1)線分$\mathrm{AB}$を$m:n$に内分する点$\mathrm{P}$の位置ベクトルは
\[ \overrightarrow{\mathrm{OP}}=\frac{n}{m+n} \overrightarrow{\mathrm{OA}}+\frac{m}{m+n} \overrightarrow{\mathrm{OB}} \]
で表されることを示せ.
(2)$\alpha,\ \beta$を実数として,点$\mathrm{Q}$を
\[ \overrightarrow{\mathrm{OQ}}=\alpha \overrightarrow{\mathrm{OA}}+\beta \overrightarrow{\mathrm{OB}} \]
で表されるベクトルの終点とする.$\alpha,\ \beta$が次のそれぞれの関係式を満たすとき,点$\mathrm{Q}$の存在範囲を図示せよ.ただし,結果に至るプロセスも示すこと.

\mon[$①$] $\alpha \geqq 0,\ \beta \geqq 0,\ \alpha+\beta=1$
\mon[$②$] $\alpha \geqq 0,\ \beta \geqq 0,\ \alpha+\beta \leqq 1$
\mon[$③$] $\alpha \geqq 0,\ \beta \geqq 0,\ 1 \leqq \alpha+\beta \leqq 2$
上智大学 私立 上智大学 2012年 第3問
一辺の長さが$1$の正四面体$\mathrm{OABC}$を考える.底面$\mathrm{ABC}$の内接円の半径を$r$とおき,頂点$\mathrm{O}$を通り底面$\mathrm{ABC}$に垂直な直線からの距離が$r$以下である点全体からなる円柱を$T$とする.

(1)$\displaystyle r=\frac{\sqrt{[ネ]}}{[ノ]}$である.
(2)正四面体$\mathrm{OABC}$の高さは$\displaystyle \frac{\sqrt{[ハ]}}{[ヒ]}$である.
(3)辺$\mathrm{AB}$の中点と頂点$\mathrm{O}$とを結ぶ線分上に点$\mathrm{P}$をとり,$x=\mathrm{OP}$とおく.$\mathrm{P}$を通り底面$\mathrm{ABC}$に平行な平面による側面$\mathrm{OAB}$の切り口を$L$とする.
$L$が$T$に含まれるような$x$の最大値を$x_1$とすると
\[ x_1=\frac{\sqrt{[フ]}}{[ヘ]} \]
である.
$\displaystyle x_1 \leqq x \leqq \frac{\sqrt{3}}{2}$のとき,$L$と$T$の共通部分の長さは
\[ \frac{[ホ]}{[マ]} \sqrt{\frac{[ミ]}{[ム]}-x^2} \]
である.
正四面体$\mathrm{OABC}$の表面で$T$に含まれる部分の面積は
\[ \frac{\pi}{[メ]} \]
である.
上智大学 私立 上智大学 2012年 第4問
$\log x$は自然対数,$e$は自然対数の底を表す.

(1)$a,\ b$は$e^{-1}<a<1,\ b>0$を満たす実数とする.曲線$C:y=\log x$と直線$\ell:y=ax+b$とが接しているとすると,
\[ b=[モ] \log a+[ヤ] \]
が成り立つ.このとき,曲線$C$と$3$つの直線$\ell$,$x=1$,$x=e$とで囲まれた図形の面積を$S(a)$とする.$a$が$e^{-1}<a<1$の範囲を動くときの$S(a)$の最小値は
\[ \left( [ユ]e+[ヨ] \right) \log \left( \frac{e+[ラ]}{[リ]} \right) +[ル] \]
で与えられる.
(2)$k$を正の定数とし,$e^{-k}<t<1$である$t$に対して,
\[ f(t)=\int_0^k |e^{-x|-t} \, dx \]
とおく.$t$が$e^{-k}<t<1$の範囲を動くときの関数$f(t)$の最小値を$M(k)$とおくと,
\[ M(k)=\left( [レ]+e^P \right)^2,\quad \text{ただし} P=\frac{[ロ]}{[ワ]}k \]
となる.このとき
\[ \lim_{k \to +0} \frac{M(k)}{k^2}=\frac{[ヲ]}{[ン]} \]
である.
中央大学 私立 中央大学 2012年 第2問
平面上に$2$本の平行な直線の組が$n$組ある.異なる組の直線は平行ではなく,どの$3$本の直線も$1$点で交わることはないとする.これら$2n$本の直線の交点の総数を$a_n$,平面がこれら$2n$本の直線によって分けられている部分の個数を$b_n$とする.このとき,以下の問いに答えよ.

(1)$a_{n+1}$と$a_n$の関係式を求めよ.
(2)$a_n$を求めよ.
(3)$b_{n+1}$と$b_n$の関係式を求めよ.
(4)$b_n$を求めよ.
中央大学 私立 中央大学 2012年 第2問
座標平面上に円$(x+4)^2+y^2=16$と点$\mathrm{P}(4,\ 0)$がある.このとき,以下の問いに答えよ.

(1)点$\mathrm{P}$を通る直線$y=mx+n$が円と$2$個の共有点を持つように定数$m$の値の範囲を定めよ.
(2)円周上を動く点$\mathrm{Q}$がある.線分$\mathrm{PQ}$を$3:2$に内分する点の軌跡を求めよ.
中央大学 私立 中央大学 2012年 第3問
$h>0,\ d \geqq 0$とし,座標空間において$4$点$\mathrm{A}(0,\ 0,\ 1)$,$\mathrm{B}(0,\ 0,\ -1)$,$\mathrm{C}(h,\ 0,\ -d)$,$\mathrm{D}(0,\ h,\ d)$を頂点とする四面体を考える.さらに$\mathrm{CD}=2$とする.したがって,四面体の$6$本の辺のうち向かい合う$2$辺の長さは$3$組とも互いに等しい.つまり
\[ \mathrm{AB}=\mathrm{CD},\quad \mathrm{AC}=\mathrm{BD},\quad \mathrm{AD}=\mathrm{BC} \]
となっており,$4$つの面はすべて互いに合同である.この四面体$\mathrm{ABCD}$について以下の問いに答えよ.

(1)$h$を$d$で表し,$d$のとりうる値の範囲を求めよ.

点$\mathrm{A}$を通り平面$\mathrm{BCD}$に垂直な直線と平面$\mathrm{BCD}$の交点を$\mathrm{P}$とおく.この点$\mathrm{P}$を点$\mathrm{A}$から平面$\mathrm{BCD}$に下ろした垂線の足とよぶ.同様に,点$\mathrm{B}$から平面$\mathrm{ACD}$に下ろした垂線の足を$\mathrm{Q}$,点$\mathrm{C}$から平面$\mathrm{ABD}$へ下ろした垂線の足を$\mathrm{R}$,点$\mathrm{D}$から平面$\mathrm{ABC}$へ下ろした垂線の足を$\mathrm{S}$とおく.

(2)点$\mathrm{R}$,$\mathrm{S}$は直線$\mathrm{AB}$上にあることに注意して,$\mathrm{R}$,$\mathrm{S}$の座標を$d$で表せ.また,四面体$\mathrm{ABCD}$の対称性を考慮して,点$\mathrm{P}$,$\mathrm{Q}$の座標を$d$で表せ.さらに,計算により$\overrightarrow{\mathrm{AP}} \cdot \overrightarrow{\mathrm{BQ}}=0$を確認せよ.
(3)辺$\mathrm{BD}$の長さのとりうる値の範囲を求めよ.
(4)平面$\mathrm{ABC}$と平面$\mathrm{ACD}$が直線$\mathrm{AC}$に沿って角度$\displaystyle \theta \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right)$で交わっている.$\theta$のとりうる値の範囲を求めよ.ただし$2$平面の交わる角度とは,それぞれの平面に直交する$2$直線のなす角度である.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。