タグ「直線」の検索結果

169ページ目:全2462問中1681問~1690問を表示)
北海学園大学 私立 北海学園大学 2012年 第3問
放物線$C:y=-x^2+9x$上の点$\mathrm{P}(t,\ -t^2+9t)$から$x$軸に下ろした垂線と$x$軸との交点を$\mathrm{H}$とする.また,点$\mathrm{Q}(9,\ 0)$に対して,三角形$\mathrm{PHQ}$の面積を$S_1$とする.ただし,$0<t<9$である.

(1)$S_1$を$t$を用いて表せ.
(2)$S_1$の最大値とそのときの$t$の値を求めよ.
(3)$t$が上の(2)で求めた値をとるとき,$C$と直線$\mathrm{PQ}$で囲まれた図形の面積$S_2$を求めよ.
北海学園大学 私立 北海学園大学 2012年 第4問
曲線$C:y=\sqrt{x}$上の点$\mathrm{P}(a,\ \sqrt{a})$における接線を$\ell$とする.曲線$C$,直線$x=a$,および$x$軸で囲まれた図形の面積が$18$であるとき,次の問いに答えよ.ただし,$a$は定数とし,$a>0$である.

(1)$a$の値を求めよ.
(2)接線$\ell$の方程式を求めよ.
(3)接線$\ell$,曲線$C$,および$x$軸で囲まれた図形を$x$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
北海学園大学 私立 北海学園大学 2012年 第3問
三角形$\mathrm{ABC}$において,辺$\mathrm{AB}$を$3:2$に内分する点を$\mathrm{M}$,辺$\mathrm{AC}$を$2:1$に内分する点を$\mathrm{N}$とし,線分$\mathrm{BN}$と線分$\mathrm{CM}$の交点を$\mathrm{P}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AM}}$,$\overrightarrow{\mathrm{AN}}$,$\overrightarrow{\mathrm{BC}}$をそれぞれ$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(2)$\overrightarrow{\mathrm{AP}}$,$\overrightarrow{\mathrm{CP}}$をそれぞれ$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(3)直線$\mathrm{AP}$と辺$\mathrm{BC}$の交点を$\mathrm{Q}$とするとき,$\overrightarrow{\mathrm{AQ}}$,$\overrightarrow{\mathrm{BQ}}$をそれぞれ$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
北海学園大学 私立 北海学園大学 2012年 第4問
$f(x)=(x-1)(x-\sqrt{3})$とする.点$\mathrm{A}(0,\ \sqrt{3})$における放物線$y=f(x)$の接線を$\ell$とするとき,次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)定積分$\displaystyle \int_0^1 f(x) \, dx$を求めよ.
(3)接線$\ell$と$x$軸との交点を$\mathrm{B}$とし,$\mathrm{C}(1,\ 0)$とする.放物線$y=f(x)$,接線$\ell$,および線分$\mathrm{BC}$で囲まれた図形の面積を求めよ.
北海学園大学 私立 北海学園大学 2012年 第4問
$3$次関数$f(x)=x^3+ax^2+bx$は,$x=2$で極大値$20$をとる.ただし,$a$と$b$は定数とする.

(1)$a$と$b$の値をそれぞれ求めよ.また,$f(x)$の極小値を求めよ.
(2)$f(x)$の定義域を$1 \leqq x \leqq 5$とするとき,$f(x)$の最大値と最小値をそれぞれ求めよ.
(3)$2$曲線$y=f(x)$,$y=x^3+27$,および$2$直線$x=1$,$x=5$で囲まれた図形の面積を求めよ.
東北学院大学 私立 東北学院大学 2012年 第3問
次の問いに答えよ.

(1)$\alpha,\ \beta$を実数の定数とするとき,
\[ \int_\alpha^\beta (x-\alpha)(x-\beta) \, dx \]
を計算せよ.
(2)点$(1,\ 2)$を通る直線と放物線$y=x^2$とで囲まれる部分の面積が最小となるときの直線の傾きを求めよ.
南山大学 私立 南山大学 2012年 第2問
放物線$C:y=x^2-kx (k>0)$と直線$\ell:y=3x$がある.$C$と$\ell$の交点で原点$\mathrm{O}$以外の点を$\mathrm{A}$とする.$C$と$\ell$で囲まれた部分の面積を$S_1$,$C$と$x$軸で囲まれた部分の面積を$S_2$とする.

(1)$\mathrm{A}$の座標を$k$で表せ.
(2)$S_1$を$k$で表せ.
(3)$\mathrm{A}$を通り$x$軸に垂直な直線と,$x$軸および$C$で囲まれた部分の面積を$S_3$とする.$S_3$を$k$で表せ.
(4)$(3)$の$S_3$と$S_2$が等しいとき,$k$の値を求めよ.
南山大学 私立 南山大学 2012年 第2問
$2$つの曲線$C_1:y=-x^2+10$と$\displaystyle C_2:y=\frac{1}{2}x^2-6x+k$がある.ただし,$k$は実数とする.$C_1$,$C_2$はそれぞれ直線$\ell$に接し,$C_1$と$\ell$の接点の$x$座標を$a$,$C_2$と$\ell$の接点の$x$座標を$b$とする.

(1)$\ell$の方程式を,$a$を用いて表せ.
(2)$k$を$a$で表せ.
(3)$b>0$であり,$C_2$と$y$軸および$\ell$で囲まれた図形の面積が$\displaystyle \frac{9}{2}$であるとき,$a$の値を求めよ.
明治大学 私立 明治大学 2012年 第4問
曲線$y=\log x$上の点$\mathrm{P}(t,\ \log t)$における接線を$\ell$とする.このとき,以下の問に答えよ.

(1)直線$\ell$の方程式を求めよ.
以下では,曲線$y=ax^2-b$は点$\mathrm{P}$を通り,$\mathrm{P}$において$\ell$に接しているとする.ただし,$a$と$b$は正の数である.曲線$y=ax^2-b$と$x$軸で囲まれた図形の面積を$S$とする.
(2)$S$を$a,\ b$を用いて表せ.
(3)$a,\ b$を$t$で表し,$t$のとりうる値の範囲を求めよ.
(4)$S$の最大値を求めよ.なお,$S$がその最大値をとる$t$の値も求めること.
南山大学 私立 南山大学 2012年 第1問
$[ ]$の中に答を入れよ.

(1)関数$f(\theta)=\sin^2 \theta-\sqrt{3} \cos \theta+2 (0 \leqq \theta \leqq \pi)$は,$\theta=[ア]$で最大値$[イ]$をとる.
(2)実数$x,\ y$が$2x+3y+1=0$を満たすとき,$4^x+8^y$は$x=[ウ]$で最小値$[エ]$をとる.
(3)実数$a$に対して,$3$次方程式$9x^3-3x^2+ax-1=0$の$1$つの解が$\displaystyle \frac{1}{3}$のとき,$a=[オ]$である.また,この方程式の$\displaystyle \frac{1}{3}$以外の解を$\alpha,\ \beta$とするとき,$\displaystyle \alpha^{18}+\beta^{18}=\frac{[カ]}{3^9}$である.
(4)平面上に,原点$\mathrm{O}$を中心とする半径$1$の円$C$と,点$(3,\ 0)$を通る傾き$m$の直線$\ell$がある.$\ell$と$C$が異なる$2$点$\mathrm{A}$,$\mathrm{B}$で交わるとき,$m$の範囲は$[キ]$である.また,線分$\mathrm{AB}$の長さが$\displaystyle \frac{\sqrt{10}}{5}$のとき,$m=[ク]$である.
(5)$a$を$0$でない実数とする.関数$f(x)=a(x^3-3x^2+a)$の極小値が$1$であり,極大値が$7$より大きいとき,$a=[ケ]$で,その極大値は$[コ]$である.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。